使える最新PRTのススメ

~おれのPRTはもう死んでいた・・・orz~

田村 尚希 株式会社 Pyramid

2.Static PRTの復習

3.Precomputed Shadow Fields 4.SH Exponentiation

5.まとめ

◆本セッションの内容

1.概要 ~はじめに~

自由に物体が動かせる動的なシーンに使える Precomputed Radiance Transfer (PRT)の解説

PRTの特徴

1)環境マップを丸ごと光源と考える
 2)リアルタイムレンダリングが可能

1. 概要~背景·

従来のPrecomputed Radiance Transfer (PRT) は、静的なシーンにのみ適用可能

近年、自由に物体を動かせるPRTが登場

用途が限られていた!!

Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments J [Sloan et al. SIGGRAPH 2002]

1. 概要~背景

◆ 近年のPRT関連手法の基礎
 となる論文

- ◆ DirectX内にツールとして統合
- ◆ 物体は動かせない・・・
 (静的なシーンのみ対応)

[Precomputed Shadow Fields for Dynamic Scenes]
[Zhou et al. SIGGRAPH 2005]

※論文より引用

 ・岡体に限り、物体を自由に
 移動・回転可能

◆ 実行速度が不十分 (計算がCPUベース)

^CReal-time Soft Shadows in Dynamic Scenes using Spherical Harmonic Exponentiation J [Ren et al. SIGGRAPH 2006]

1. 概要~背景

※論文より引用

 物体の形状変形可能 (スキニングメッシュ)

- ◆ GPUを利用した高速処理
- ◆ 概念的にはPrecomputed Shadow Fieldsの拡張

◆ 物体を球の集合で近似

2.Static PRTの復習

3.Precomputed Shadow Fields 4.SH Exponentiation 5.まとめ

◆ PRTにおけるリアルタイム化の要点

1.シーン状態を固定

2.輝度計算をピクセル単位から頂点単位に変更

3.前計算した遮蔽情報を圧縮

2. 輝度計算を頂点単位に変更

→ 頂点のみで輝度を計算し、三角形内で頂点の 輝度を補間しながら、三角形描画

スクリーン上の各pixelで輝度を計算するよりも高速 場合によっては、メッシュを細かく分割する必要がある!!

3. 前計算した情報を圧縮

理由1. 前計算した遮蔽情報は、データ量が膨大

全遮蔽情報データ量 = 頂点数 ×

理由2. 遮蔽情報を前計算したとしても、IBL積分のリアル タイム処理は難しい

データ圧縮、積分計算の高速化が必要

→ 球面調和関数を利用して同時に解決

1.概要 2.Static PRTの復習

3.Precomputed Shadow Fields (PSF) 4.SH Exponentiation 5.まとめ

◆ 各物体を剛体と仮定すると、自分自身による遮蔽は不変

→ 各物体は移動・回転できるが、形状は変形できない

SH Rotationとは??

情報(画像)の基準軸の回転を 係数ベクトル空間で直接行う計算

SIPSE ~SH Rotation~

◆ 任意の回転のSH Rotationは複雑

◆ ただし、SHはZ軸対称なのでZ軸中心の回転は容易

(Z軸回転後の係数ベクトル) = Z_{α} × (回転前の係数ベクトル)

Z軸回転用の回転行列(3次の球面調和関数)

3. Precomputed Shadow Fields (PSF)

1.実装の要点

2.まとめ

◆ SH Triple Productの実装方法

3.PSF ~実装の要点~

Code Generation and Factoring for Fast Evaluation of Low-order Spherical Harmonic Products and Squares

◆ http://research.microsoft.com/research/pubs/ にて論文公開

◆ SH Rotationの実装方法

Spherical Harmonic Lighting: The Gritty Details

 http://www.research.scea.com/gdc2003/spheric al-harmonic-lighting.html にて公開

3. Precomputed Shadow Fields (PSF)

1.実装の要点 2.まとめ

1.概要 2.Static PRTの復習 3.Precomputed Shadow Fields 4.SH Exponentiation(SHEXP) 5.まとめ

・物体を一つの剛体として扱うと形状変形不可能 →物体を球の集合として扱う

◆球近似の欠点

- 1.物体の適切な球近似は、やや難しい問題
- i.e.「Variational Sphere Set Approximation for Solid Objects」
 「Adaptive Medial-Axis Approximation for Sphere-Tree Construction」
 2.低周波近似しかできない
 - 3.物体数自体は増加 → Triple Productの回数が増加
- → SH Log演算・SH Exp演算を利用し、Triple Productを 劇的に高速化

 $G = g_1 \times g_2 \times g_3 \times \Lambda \times g_m$

log(g)を用いると

 $F = \log(g_1) + \log(g_2) + \log(g_3) + \Lambda + \log(g_m)$

 $G = \exp(F)$

掛け算は、それぞれlogを取ると足し算に置き換えが可能

◆ SH Log・Exp演算 \overline{g} を遮蔽情報を展開した係数ベクトル(OCV)とする $\overline{G} = \overline{g}_1 \times_{TP} \overline{g}_2 \times_{TP} \overline{g}_3 \times_{TP} \Lambda \times_{TP} \overline{g}_m$ $\overline{g}_1 \times_{TP} \overline{g}_2$ は、 $\overline{g}_1 \succeq \overline{g}_2$ のTriple Productを表す $\overline{F} = \log(\overline{g}_1) + \log(\overline{g}_2) + \log(\overline{g}_3) + \Lambda + \log(\overline{g}_m)$

 $\overline{G} = \exp(\overline{F})$

SH Log・SH Exp演算を定義できれば、 Triple Productは単純な足し算になる

[Variational Sphere Set Approximation for Solid Objects]
[Wang et al. PacificGraphics 2006]

◆ SH Exp用に開発した手法

◆ http://research.microsoft
 .com/users/kunzhou/
 にて論文公開

 Construction J

[Bradshaw et al. SIGGRAPH 2004]

※論文より引用

◆ 既存手法

- ◆ 近似効率は前論文に劣る
- http://isg.cs.tcd.ie/sphere tree/

にて論文・デモ・ソース公開

自分はこれを使いました・・・

<u>SH Log空間の球のshadow fieldsの概念図</u>

▶ 4.SHEXP ~SH Exp演算~

♦ SH Exp演算

 $\exp(\overline{F}) = \overline{1 + F} + \frac{\overline{F}^{2}}{2!} + \frac{\overline{F}^{3}}{3!} + \frac{\overline{F}^{4}}{4!} + \Lambda$ SH Exp演算は実行時に利用 → 高速に計算したい 負荷の原因: $\overline{F}^{2}, \overline{F}^{3}, \overline{F}^{4}, \Lambda$ の計算が重い

最初の二項(線形項)のみで何とか近似できないか?

 $\exp(F) \approx a1 + bF$ $t \ge t \ge \sqrt{1} = (\sqrt{4\pi}, 0, 0, \Lambda)$

二項の重み付き線形和で近似する

<u>SH Exp演算の概念図</u>

4.SHEXP ~SH Exp(高速版)~

◆ a,bテーブルの作成の改良

遮蔽情報の組み合わせは無数に存在

→ \bar{f} 毎にa,bをテーブル化するのは非現実的

a b

0.0

6.0

a,bテーブル

 $|\bar{f}|$

妥協案:

- ✓ f ではなく |f| でテーブル化
 - → \bar{f} が異なっていても $|\bar{f}|$ が同一なら同じa,bを利用
 - → 組み合わせ数の削減

✓ テーブルの上限、下限を設定

現実的にテーブルを作成可能

<u>SH Exp演算の概念図</u>

▶ 4.SHEXP ~SH Exp(高速版)~

◆ a,bテーブルの近似精度の改善

→ DC Isolation (直流成分の分離)

$$\bar{f} = (\bar{f}_0^0, \bar{f}_1^{-1}, \bar{f}_1^0, \bar{f}_1^1, \Lambda)$$

の各ベクトル要素うち、絶対値が大きいのは最初の要素(平均値 成分、直流成分)である

→ 1番目の要素とそれ以外の要素で別計算

$$\bar{f} = (\bar{f}_0^0, \bar{f}_1^{-1}, \bar{f}_1^0, \bar{f}_1^1, \Lambda)$$

分離

$$\hat{\bar{f}} = (0, \bar{f}_1^{-1}, \bar{f}_1^0, \bar{f}_1^1, \Lambda)$$
:ベクトル

<u>SH Exp演算の概念図</u>

<u>SH Exp演算の概念図</u>

<u>SH Exp演算の概念図</u>

4.SH Exponentiation

✓ 実装の要点

✓ まとめ

♦ SH Squaringの実装方法

Code Generation and Factoring for Fast Evaluation of Low-order Spherical Harmonic Products and Squares

◆ http://research.microsoft.com/research/pubs/ にて論文公開

◆球近似の実装方法

 FAdaptive Medial-Axis Approximation for Sphere-Tree

 Construction_

◆ http://isg.cs.tcd.ie/spheretree/ にてソース公開

4.SH Exponentiation

✓ 実装の要点✓ まとめ

物体を球の集合で近似し,形状変形に対応 SH Triple Productの処理負荷を下げるため SH Log/SH Expを導入

1. 概要 2. Static PRTの復習 3. Precomputed Shadow Fields 4. SH Exponentiation 5. まとめ

動的なシーンに使えるPRTの解説

3節

Precomputed Shadow Fields

4節

SH Exponentiation

物体を球の集合で近似し,形状変形に対応 SH Triple Productの処理負荷を下げるため SH Log/SH Expを導入

Pyramidスタッフー同

◆ご清聴ありがとうございました ◆質問・ご意見は以下までお寄せ下さい Pyramid HP - http://www.pyramid-inc.net/ 近日中にPowerPointファイルをUpします ✓ E-mail rd@pyramid-inc.net

♦ SH Exp演算 $\bar{f} = \log(\bar{g})$ が与えられたとき exp(\bar{f})を求める $\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \Lambda \implies \exp(\bar{f}) = \bar{1} + \bar{f} + \frac{\bar{f}^2}{2!} + \frac{\bar{f}^3}{3!} + \frac{\bar{f}^4}{4!} + \Lambda$ $\overline{1} = (\sqrt{4\pi}, 0, 0, \Lambda)$ $\bar{f}^N \approx \bar{f} \times_{TP} \bar{f} \times_{TP} \Lambda \times_{TP} \bar{f}$ $(M_{\bar{f}})_{ij} = \sum \tau_{ijk} \bar{f}_k$ とおくと $\Leftrightarrow \bar{f}^{N} \approx M_{\bar{f}} \times M_{\bar{f}} \times \Lambda \times \bar{f}$ $\Leftrightarrow \bar{f}^N \approx (M_{\bar{f}})^{N-1} \bar{f}$

◆SH Exp演算

 $\exp(\bar{f}) = \bar{1} + \bar{f} + \frac{\bar{f}^2}{2!} + \frac{\bar{f}^3}{3!} + \frac{\bar{f}^4}{4!} + \Lambda$ $\bar{f}^N \approx (M_{\bar{f}})^{N-1} \bar{f} \quad \mathbf{E} \mathbf{\mathcal{K}} \mathbf{\mathcal{A}} \mathbf{\mathcal{F}} \mathbf{\mathcal{E}}$ $\Leftrightarrow \exp(\bar{f}) \approx \bar{1} + \bar{f} + \frac{(M_{\bar{f}})\bar{f}}{2!} + \frac{(M_{\bar{f}})^2\bar{f}}{3!} + \frac{(M_{\bar{f}})^3\bar{f}}{4!} + \Lambda$

$$\Leftrightarrow \exp(\bar{f}) \approx \bar{1} + (I + \frac{(M_{\bar{f}})}{2!} + \frac{(M_{\bar{f}})^2}{3!} + \frac{(M_{\bar{f}})^3}{4!} + \Lambda)\bar{f}$$

$$\exp(M_{\bar{f}}) = I + M_{\bar{f}} + \frac{(M_{\bar{f}})^2}{2!} + \frac{(M_{\bar{f}})^3}{3!} + \frac{(M_{\bar{f}})^4}{4!} + \Lambda \ \epsilon 考える$$

$$\exp(\bar{f}) \approx \bar{1} + (I + \frac{(M_{\bar{f}})}{2!} + \frac{(M_{\bar{f}})^2}{3!} + \frac{(M_{\bar{f}})^3}{4!} + \Lambda)\bar{f}$$

◆ SH Exp演算

$$\exp(M_{\bar{f}}) = I + M_{\bar{f}} + \frac{(M_{\bar{f}})^2}{2!} + \frac{(M_{\bar{f}})^3}{3!} + \frac{(M_{\bar{f}})^4}{4!} + \Lambda$$

 $(M_{\bar{f}})^p$ を考える

 $M_{\bar{f}}$ を対角化し、直交行列 $R_{\bar{f}}$ と対角行列 $D_{\bar{f}}$ を計算

 $M_{\bar{f}} = R_{\bar{f}} \times D_{\bar{f}} \times R_{\bar{f}}^{T}$

 $M_{\bar{f}} = \begin{bmatrix} (R_{\bar{f}})_{1,1} & (R_{\bar{f}})_{1,2} & \Lambda & (R_{\bar{f}})_{1,N} \\ (R_{\bar{f}})_{2,1} & (R_{\bar{f}})_{2,2} & \Lambda & (R_{\bar{f}})_{2,N} \\ M & M & O & M \\ (R_{\bar{f}})_{N,1} & (R_{\bar{f}})_{N,2} & \Lambda & (R_{\bar{f}})_{N,N} \end{bmatrix} \times \begin{bmatrix} (D_{\bar{f}})_{1,1} & 0 & \Lambda & 0 \\ 0 & (D_{\bar{f}})_{2,2} & \Lambda & 0 \\ M & M & O & M \\ 0 & 0 & \Lambda & (D_{\bar{f}})_{N,N} \end{bmatrix} \times \begin{bmatrix} (R_{\bar{f}})_{1,1} & (R_{\bar{f}})_{2,1} & \Lambda & (R_{\bar{f}})_{N,1} \\ (R_{\bar{f}})_{1,2} & (R_{\bar{f}})_{2,2} & \Lambda & (R_{\bar{f}})_{N,2} \\ M & M & O & M \\ (R_{\bar{f}})_{N,N} & (R_{\bar{f}})_{N,N} \end{bmatrix} \times \begin{bmatrix} (D_{\bar{f}})_{1,1} & 0 & \Lambda & 0 \\ 0 & (D_{\bar{f}})_{2,2} & \Lambda & 0 \\ M & M & O & M \\ (R_{\bar{f}})_{1,N} & (R_{\bar{f}})_{2,N} & \Lambda & (R_{\bar{f}})_{N,N} \end{bmatrix}$

SH Exp演算
$$exp(\bar{f}) \approx \bar{1} + (I + \frac{(M_{\bar{f}})^{2}}{2!} + \frac{(M_{\bar{f}})^{2}}{3!} + \frac{(M_{\bar{f}})^{3}}{4!} + \Lambda)\bar{f}$$

$$(M_{\bar{f}})^{p} \square注目し、また M_{\bar{f}} = R_{\bar{f}} \times D_{\bar{f}} \times R_{\bar{f}}^{T}$$

$$(M_{\bar{f}})^{2} E \ddagger 算 = \bar{G}$$

$$(M_{\bar{f}})^{2} = (R_{\bar{f}} \times D_{\bar{f}} \times R_{\bar{f}}^{T}) \times (R_{\bar{f}} \times D_{\bar{f}} \times R_{\bar{f}}^{T})$$

$$\Leftrightarrow (M_{\bar{f}})^{2} = (R_{\bar{f}} \times D_{\bar{f}} \times D_{\bar{f}} \times R_{\bar{f}}^{T})$$

$$\Leftrightarrow (M_{\bar{f}})^{2} = (R_{\bar{f}} \times D_{\bar{f}} \times D_{\bar{f}} \times R_{\bar{f}}^{T})$$

$$\Leftrightarrow (M_{\bar{f}})^{2} = (R_{\bar{f}} \times D_{\bar{f}} \times R_{\bar{f}}^{T})$$

$$= \left[(D_{\bar{f}})_{1,1}^{p} = \Lambda \quad 0 \\ 0 \quad (D_{\bar{f}})_{2,2}^{p} \Lambda \quad 0 \\ M \quad M \quad O \quad M \\ 0 \quad 0 \quad \Lambda \quad (D_{\bar{f}})_{N,N}^{p} \right]$$

Exp(
$$\bar{f}$$
) ≈ $\bar{1}$ + $(I + \frac{(M_{\bar{f}})^2}{2!} + \frac{(M_{\bar{f}})^2}{3!} + \frac{(M_{\bar{f}})^3}{4!} + \Lambda)\bar{f}$

 SH Exp演算

 ここで exp($M_{\bar{f}}$) = $I + M_{\bar{f}} + \frac{(M_{\bar{f}})^2}{2!} + \frac{(M_{\bar{f}})^3}{3!} + \frac{(M_{\bar{f}})^4}{4!} + \Lambda$
 $(M_{\bar{f}})^p = (R_{\bar{f}} \times (D_{\bar{f}})^p \times R_{\bar{f}}^T)$

 を代入すると

 exp($M_{\bar{f}}$) = $R_{\bar{f}}$
 $I + D_{\bar{f}} + \frac{(D_{\bar{f}})^2}{2!} + \frac{(D_{\bar{f}})^3}{3!} + \frac{(D_{\bar{f}})^4}{4!} + \Lambda$
 $(M_{\bar{f}}) = R_{\bar{f}}$
 $Exp(M_{\bar{f}}) = R_{\bar{f}}$
 $exp(M_{\bar{f}}) = R_{\bar{f}}$
 $exp(D_{\bar{f}})_{1,1})$
 0
 0
 $exp((D_{\bar{f}})_{1,2})$

Μ

0

Μ

0

0

Λ

Μ

 $\exp((D_{\bar{f}})_{N,N})$

 $\exp(M_{\bar{f}}) = R_{\bar{f}} \exp(D_{\bar{f}}) R_{\bar{f}}^T \qquad \exp(D_{\bar{f}}) =$

遮蔽係数ベクトル gが与えられたとき log(g)を求める

求めたい $\log(\overline{g})$ を \overline{f} とおく

 $\bar{f} = \log(\bar{g})$ $\dot{z}\dot{s}c \exp(\bar{f}) = \bar{g}$

Appendix B. より

$$\exp(\bar{f}) = \bar{1} + \left(R_{\bar{f}}q(D_{\bar{f}})R_{\bar{f}}^T\right)\bar{f}$$

このとき
$$q(x) = \frac{\exp(x) - 1}{r}$$
 $\overline{1} = (\sqrt{4\pi}, 0, 0, \Lambda)$

♦ SH Log演算

遮蔽係数ベクトル \overline{g} が与えられたとき $\log(\overline{g})$ を求める $\overline{f} = \log(\overline{g})$ さらに $\exp(\overline{f}) = \overline{g}$

 $\exp(\bar{f}) = \bar{1} + \left(R_{\bar{f}}q(D_{\bar{f}})R_{\bar{f}}^{T}\right)\bar{f}$

 $\Leftrightarrow \overline{g} = \exp(\overline{f}) = \overline{1} + \left(R_{\overline{f}} q(D_{\overline{f}}) R_{\overline{f}}^T \right) \overline{f}$

Appendix B. と同様にして $M_{\bar{g}} = R_{\bar{g}} \times D_{\bar{g}} \times R_{\bar{g}}^{T}$

$$\Leftrightarrow M_{\log(\overline{g})} = R_{\overline{g}} \times D_{\log(\overline{g})} \times R_{\overline{g}}^{T} \approx M_{\overline{f}}$$

 $R_{\overline{g}}^{T}(\overline{g}-\overline{1}) = \overline{I}(q(D_{\log(\overline{g})})R_{\overline{g}}^{T})\overline{f}$

♦ SH Log演算

遮蔽係数ベクトル gが与えられたとき log(g)を求める $f = \log(\overline{g})$ さらに $\exp(\overline{f}) = \overline{g}$ $R_{\overline{q}}^{T}(\overline{g}-\overline{1}) = \left(q(D_{\log(\overline{g})})R_{\overline{g}}^{T}\right)\overline{f}$ $\left(q(D_{\log(\overline{g})})\right)^{-1} R_{\overline{g}}^{T}(\overline{g}-\overline{1}) = \left(q(D_{\log(\overline{g})})\right)^{-1} \left(q(D_{\log(\overline{g})})\right) R_{\overline{g}}^{T} \overline{f}$ $\left(q(D_{\log(\overline{g})})\right)^{-1}R_{\overline{g}}^{T}(\overline{g}-\overline{1}) = IR_{\overline{g}}^{T}\overline{f}$ $R_{\overline{g}}(q(D_{\log(\overline{g})}))^{-1}R_{\overline{g}}^{T}(\overline{g}-\overline{1})=\overline{f}$

♦ SH Log演算

遮蔽係数ベクトル \overline{g} が与えられたとき $\log(\overline{g})$ を求める $\overline{f} = \log(\overline{g})$ さらに $\exp(\overline{f}) = \overline{g}$

 $R_{\overline{g}}(q(D_{\log(\overline{g})}))^{-1}R_{\overline{g}}^{T}(\overline{g}-\overline{1}) = \overline{f} \ \mathcal{O} \mathfrak{f} \mathfrak{f} \left(q(D_{\log(\overline{g})})\right)^{-1} に注目する$

対角行列の逆行列は,各対角成分を逆数にしたものなので

$$\left[q(D_{\log(\bar{g})})\right)^{-1} = \begin{bmatrix} \frac{1}{q((D_{\log(\bar{g})})_{1,1})} & 0 & \Lambda & 0\\ 0 & \frac{1}{q((D_{\log(\bar{g})})_{2,2})} & \Lambda & 0\\ M & M & O & M\\ 0 & 0 & \Lambda & \frac{1}{q((D_{\log(\bar{g})})_{N,N})} \end{bmatrix}$$

◆参考文献(Paper) – PRT関係

 「Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments」
http://research.microsoft.com/~ppsloan/で論文公開

 「Precomputed Shadow Fields for Dynamic Scenes」
http://research.microsoft.com/users/kunzhou/ で論文公開

◆参考文献(Paper) – PRT関係

◆「Local, Deformable Precomputed Radiance Transfer」 http://research.microsoft.com/~ppsloan/で論文公開

Real-time Soft Shadows in Dynamic Scenes using Spherical Harmonic Exponentiation

http://research.microsoft.com/users/kunzhou/ で論文公開

◆参考文献(Paper) – 球近似

Variational Sphere Set Approximation for Solid Objects」
http://research.microsoft.com/users/kunzhou/<
で論文公開

FAdaptive Medial-Axis Approximation for Sphere-Tree Construction

http://isg.cs.tcd.ie/spheretree/で論文公開

◆参考文献(Paper) - 実装

- ◆ SH Triple Product/SH Squaringの実装方法
 - 「Code Generation and Factoring for Fast Evaluation of Low-order Spherical Harmonic Products and Squares」 http://research.microsoft.com/research/pubs/ にて論文公開
- ◆ SH Rotationの実装方法
 - 「Spherical Harmonic Lighting: The Gritty Details」 http://www.research.scea.com/gdc2003/sphericalharmonic-lighting.html にて公開

◆参考文献(書籍・その他) ◆ 入門・解説書として最適だと思います Spherical Harmonic Lighting: The Gritty Details http://www.research.scea.com/gdc2003/sphericalharmonic-lighting.html にて公開 ◆ 球面調和関数の説明も踏まえ, 分かりやすく解説 されています Imagire氏のHP: t-pot http://www.t-pot.com/

◆ 表1 2節で使用する記号「IBL」まで

記号	読み方	意味
ω	オメガ	(単位球(半径1)上 <mark>への点)への方向ベクトル</mark>
Ω	オメガ	全球(∫ _Ω は、全球に渡って積分することを意味する)
L	エル	環境光源の輝度(明るさ)の情報
V	ブイ	遮蔽情報(遮蔽がある方向は0,遮蔽がない方向は1)
n	TR	面の法線
$\omega \cdot n$	オメガエヌ	ω と面の法線との内積
T	ティー	$V \ge \omega \cdot n$ の項を合わせた情報(光の伝達関数)

◆ 表2 2節で使用する記号「Static PRT」以降

記号	読み方	意味
f	エフ	「任意の」情報
g	ジー	fを近似する「任意の」直交関数(直交基底)群
a	Н	fをgで近似したときの各関数(基底)に対する係数
У	ワイ	球面調和関数
l	エル	球面調和関数の次数(正確には1+1を次数と呼ぶ)
m	ТД	球面調和関数の添え字(+1から-1まで変化)
S	エス	三次元極座標系で定義された「任意の」情報
S_m^l	エス	Sをyで近似したときの各基底に対する係数
L_m^l	エル	環境光源の輝度情報Lをyで近似したときの係数
T_m^l	ティー	光の伝達関数Tをyで近似したときの係数

表3 3節で使用する記号

記号	読み方	意味
OCV	オーシーブイ	「遮蔽情報」を球面調和関数で近似した係数ベクトル
E	イーへ	(係数ベクトルで表現された)FとGを統合した情報
F	エフ	(係数ベクトルで保存された)統合したい1つ目の情報
G	ジー	(係数ベクトルで保存された)統合したい2つ目の情報
i	アイ	Eに対する添え字(1,mに関して小さい順に並べたもの)
j	ジェイ	Fに対する添え字(1,mに関して小さい順に並べたもの)
k	ケー	Gに対する添え字(1,mに関して小さい順に並べたもの)
τ	タウ	SH Triple Productで用いる定数(三次元(i,j,k)の情報)
R	アール	任意の回転

◆表4 4節で使用する記号「概要」

記号	読み方	意味
\overline{g}	ジーバー	(非SH Log空間の)遮蔽情報の係数ベクトル(OCVと同義)
\overline{f}	エフバー	gに対してSH Log変換を施した後の係数ベクトル
\times_{TP}	トリプロプロダクト	SH Triple Productによる二つの係数ベクトルの統合
8	ジー	「任意の」スカラー値
G	ジー	gを全て乗算したスカラー値
F	エフ	gをそれぞれLogを取って後、全て足したスカラー値
\overline{G}	ジーバー	全てのӯを統合した遮蔽情報(の係数ベクトル)
\overline{F}	エフバー	SH Log空間の $\overline{g}(=\overline{f})$ を全て加算した係数ベクトル

◆表5 4節で使用する記号「球のshadow fields」

記号	読み方	意味
\overline{g}	ジーバー	(非SH Log空間の)遮蔽情報の係数ベクトル(OCVと同義)
\overline{f}	エフバー	gに対してSH Log変換を施した後の係数ベクトル
\times_{TP}	トリプロプロダクト	SH Triple Productによる二つの係数ベクトルの統合
\overline{G}	ジーバー	全ての gを統合した遮蔽情報(の係数ベクトル)
\overline{F}	エフバー	SH Log空間の $\overline{g}(=\overline{f})$ を全て加算した係数ベクトル
\overline{g}_z	ジーバーゼット	(係数補正前の)Zonal Harmonics係数ベクトル
θ	シータ	ワールドのZ軸からみた、回転中心軸の方向
\overline{g}'_z	ジーバーゼットダッシュ	(係数補正後の)Zonal Harmonics係数ベクトル
θ_s	シータエス	注目点から延ばした球の接線と回転中心軸の成す角

◆表6 4節で使用する記号「SH Log変換」

記号	読み方	意味
\overline{g}	ジーバー	(非SH Log空間の)遮蔽情報の係数ベクトル(OCVと同義)
\overline{f}	エフバー	gに対してSH Log変換を施した後の係数ベクトル
\times_{TP}	トリプロプロダクト	SH Triple Productによる二つの係数ベクトルの統合
\overline{G}	ジーバー	全ての 家を統合した遮蔽情報(の係数ベクトル)
\overline{F}	エフバー	SH Log空間の $\overline{g}(=\overline{f})$ を全て加算した係数ベクトル
τ	タウ	SH Triple Productで用いる定数(三次元(i,j,k)の情報)
$M_{\overline{g}}$	エムジーバー	τとgを掛けた行列
$R_{\overline{g}}$	アールジーバー	M _g を対角化したときの直交行列
$D_{\overline{g}}$	ディージーバー	M _g を対角化したときの対角行列
<i>q</i> ′	キューダッシュ	SH Log変換において対角要素に作用させる関数

◆表7.1 4節で使用する記号「球の遮蔽の統合」まで

記号	読み方	意味
\overline{g}	ジーバー	(非SH Log空間の)遮蔽情報の係数ベクトル(OCVと同義)
\overline{f}	エフバー	gに対してSH Log変換を施した後の係数ベクトル
\times_{TP}	トリプロプロダクト	SH Triple Productによる二つの係数ベクトルの統合
\overline{G}	ジーバー	全ての gを統合した遮蔽情報(の係数ベクトル)
\overline{F}	エフバー	SH Log空間の $\overline{g}(=\overline{f})$ を全て加算した係数ベクトル
\overline{g}_z	ジーバーゼット	(係数補正前の)Zonal Harmonics係数ベクトル
θ	シータ	ワールドのZ軸からみた、回転中心軸の方向
$\overline{g'_z}$	ジーバーゼットダッシュ	(係数補正後の)Zonal Harmonics係数ベクトル
θ_s	シータエス	注目点から延ばした球の接線と回転中心軸の成す角

◆表7.2 4節で使用する記号「球の遮蔽の統合」まで

記号	読み方	意味
V	ブイ	任意の頂点の三次元座標
С	シー	対象とする球の中心の三次元座標
r	アール	対象とする球の半径

◆表8 4節で使用する記号「SH Exp演算(高速版)」

記号	読み方	意味
\overline{g}	ジーバー	(非SH Log空間の)遮蔽情報の係数ベクトル(OCVと同義)
\overline{f}	エフバー	夏に対してSH Log変換を施した後の係数ベクトル
\times_{TP}	トリプロプロダクト	SH Triple Productによる二つの係数ベクトルの統合
\overline{G}	ジーバー	全ての 家を統合した 遮蔽情報(の係数ベクトル)
\overline{F}	エフバー	SH Log空間の $\overline{g}(=\overline{f})$ を全て加算した係数ベクトル
a,b	エー,ビー	(高速版)SH Exp演算における重み係数
\overline{f}_{o}^{o}	エフバーゼロゼロ	\overline{f} の一番最初の係数(直流成分=最も低周波の成分)
$\hat{\overline{f}}$	エフバーハット	\overline{f} から \overline{f}_{0}^{0} を除外(\overline{f}_{0}^{0} を0に)した係数ベクトル
$ \hat{f} $	絶対値エフバーハット	ベクトル \hat{f} の絶対値
$\hat{\overline{g}}$	ジーバーハット	\overline{g} から $\overline{f}_{\theta}^{0}$ の成分を除外した係数ベクトル
$\hat{\overline{g}}_0^0$	ジーバーハットゼロゼロ	\hat{g} の一番最初の係数(最も低周波の成分)