流体力学のゲーム応用(その2)[1/35]

CEDEC2006 (CESA DEVELOPERSCONFERENCE 2006)

流体力学のゲーム応用(その2)

2006年9月1日

株式会社バンダイナムコゲームス 新規事業開発室

流体力学のゲーム応用(その2)[2/35]

目次

1.セミナーの背景 2. ゲーム技術の鍵 3.流体力学って何? 4. 流体力学の分類 5.ゲームに応用できる流体力学 2次元完全流体(複素ポテンシャル論) 2次元完全流体(複素写像関数) 2次元完全流体(有限要素法) 3次元完全流体(Biot-Savartの定理) 2次元粘性流体(N·S方程式) 3次元粘性流体(N·S方程式) 海洋波 複合現象(流体、混合、燃焼)

セミナーの背景

ゲームの歴史は、新しい技術の導入の歴史 新しい技術で、新しい「遊び」を提案 ゲームメーカならではのオリジナリティのある 技術でゲーム産業を活性化 ゲームの対象は森羅万象。他分野の技術 (理学、工学、心理学、医学、etc)を積極的に 学び、活かすスキルが求められている 流体力学を使う物理エンジンの出現 (中身を知れば、応用も可能)

流体力学のゲーム応用(その2)[4/35]

ゲーム技術の鍵

ゲームの基本はインタラクティブ性 非リアルタイム・ゲームでもスピードは重要 物理シミュレーションといえど、リアルタイム 処理できなければ、使い物にならない シンプルな操作性 プレイヤーがゲームに集中できるように、 シンプルかつ分かり易い入力操作 物理シミュレーションであれば、少ないパラ メータで表現、コントロールも可能

流体力学のゲーム応用(その2)[5/35]

流体力学って何? (1/2)

数学から見ると(超難問!)

- ・ 歴史上の物理数学者(Bernoulli, Lagrange, Euler, Helmholtz, Navier, Stokes, ····)は、
 流体力学を発展させたが、あの高名な流体方程式 (Navier・Stokes方程式)は世界十大難問のひとつ 米国クレイ数学研究所が100万ドルの懸賞金提供も
 物理学から見ると(自然現象の理解!)
 - ・連続物体(水流、渦、波、台風、・・・)の移動現象 (質量、運動量、エネルギー)を取り扱う力学だが、 現象ごとの物理の理解が求められる

流体力学のゲーム応用(その2)[6/35]

流体力学って何?(2/2)

流体力学(移動現象)表す式は、こんな式

1	保存方程式	速度方程式	変化の式
物質(全体)	連続の式 $\frac{D\rho}{Dt} = -\rho(\boldsymbol{p} \cdot \boldsymbol{v})$ $\rho = \text{const} \boldsymbol{o} \geq \boldsymbol{\delta} (\boldsymbol{p} \cdot \boldsymbol{v}) = 0$		
運動量	$\rho \frac{D v}{D t} = - \nabla p - [\nabla \cdot \tau] + \rho g$	$\boldsymbol{\tau} = -\mu [\{\boldsymbol{\rho} \boldsymbol{v}\} + {}^{\dagger} \{\boldsymbol{\rho} \boldsymbol{v}\}] \\ + \left(\frac{2}{3} \mu - \varphi\right) (\boldsymbol{\rho} \cdot \boldsymbol{v}) \boldsymbol{\delta}$	Navier-Stokes の式 $\rho = \text{const}$ のとき $\rho \frac{Dv}{Dt} = - r p + \mu r^2 v + \rho g$
エネルギー	$\begin{split} \rho \hat{C}_{v} \frac{DT}{Dt} &= -\langle \boldsymbol{\varphi} \cdot \boldsymbol{q} \rangle \\ &- T \left(\frac{\partial p}{\partial T} \right)_{\hat{\boldsymbol{\varphi}}} \left(\boldsymbol{\varphi} \cdot \boldsymbol{v} \right) \\ &+ \mu \boldsymbol{\Phi}_{v} \end{split}$	q= KF T	$\rho, \kappa = \text{const}, \hat{C}_v = \hat{C}_p = \text{const}$ $\Phi_v = 0 0 \geq \tilde{\varepsilon}$ $\frac{DT}{Dt} = \alpha p^2 T (\alpha = \kappa / \rho \hat{C}_p)$
物質(各成分)	$\frac{\frac{\partial \rho_A}{\partial t} + (\boldsymbol{p} \cdot \boldsymbol{J}_A) = \boldsymbol{r}_A}{\frac{\partial C_A}{\partial t} + (\boldsymbol{p} \cdot \boldsymbol{N}_A) = \boldsymbol{R}_A}$	$J_{AM} = J_A - \omega_A (J_A + J_B)$ = $-\rho \mathcal{D}_{AB} \nabla \omega_A$ $N_{AN} = N_A - x_A (N_A + N_B)$ = $-C \mathcal{D}_{AB} \nabla x_A$	$\rho, \mathcal{D}_{AB} = \text{const}$ $\frac{D\rho_A}{Dt} = \mathcal{D}_{AB} \nabla^2 \rho_A + r_A$ $\Rightarrow \delta \cup \forall \mathfrak{l}$ $\frac{DC_A}{Dt} = \mathcal{D}_{AB} \nabla^2 C_A + R_A$

平岡、田中著「移動現象論」朝倉書店より もっと簡単な式で流体を表現したい! (このセミナーの目的) 流体力学のゲーム応用(その2)[7/35]

流体力学の分類(1/3)

2次元流体(軸対称流体も含む) <u>3次元流体</u> 2次元流体をうまく見せれば、3次元流体にも見える 3次元流体は、計算コストが高い <u>非粘性流体(完全流体)</u> 粘性流体 非粘性流体(完全流体)でも流体らしく表現可能 粘性現象は局部的(壁近傍など)、大局的には非粘性 定常流体 非定常流体 非定常流体は、計算コストが高い 定常流体をうまく処理すれば非定常流体に見える (ゲームのインタラクティブ性表現には必須?) 非圧縮性流体 圧縮性流体 航空力学は非圧縮流体が対象、ゲームはこれから?

流体力学のゲーム応用(その2)[8/35]

流体力学の分類(2/3)

ニュートン流体(水) 非ニュートン流体(血液、溶岩) 非ニュートン流体の流体力学は未解明 層流(乱れのない流れ) 乱流(乱れ、不安定な流れ) Navier, Stokes 方程式では乱流現象を表現できない (Reynolds応力がN·S方程式に追加) 単体現象(流体) 複合現象(流体、混合、燃焼) 複合現象(流体、混合、燃焼)は、計算コストが高い パーティクル・システムの応用もある 自由界面なし(内部流体) 自由界面あり(波) 波の変形(砕波、屈折、回折)は海岸工学 <u>造波(Radiation / Diffraction)は船舶海洋工学</u>

流体力学のゲーム応用(その2)[9/35]

流体力学の分類(3/3)

連続流体 不連続流体 特殊流体問題(砕波、越波、雪崩)は、 従来の解法(ポテンシャル論、差分法、有限要素法)で は解けない。新しい解法(粒子法、・・・)の出現

粒子法(東大越塚研究室のHPより) http://mps.q.t.u-tokyo.ac.jp/ 流体力学のゲーム応用(その2)[10/35]

ゲームに応用できる流体力学(1/2)

2次元完全流体(複素ポテンシャル論)

- ・揺動回転円柱の流れ場(PC<mark>実演</mark>)
- ・壁と円柱に沿った複数渦の流れ場(PC実演)

2次元完全流体(複素写像変換)

- Joukowski変換による翼の流れ場(PC実演)
- ・拡張Lewis Form変換による円柱の流れ場(PC実演)
 2次元完全流体(有限要素法)
- · 循環流(PC実演)
- 3次元完全流体(Biot-Savartの定理)
- ・Vortex Ring 【空気砲】(PC実演)

流体力学のゲーム応用(その2)[11/35]

ゲームに応用できる流体力学(2/2)

2次元粘性流体(Navier·Stokes方程式)

- ・ゲーム(SwiQ)(ビデオ上映)
- ・ゲーム(JetFinger)(ビデオ上映)
- 3次元粘性流体(Navier·Stokes方程式)
- ・竜巻のシミュレーション(PC実演)

海洋波

短波頂不規則波のシミュレーション
 ISSC(International Ship Structure Congress)
 波スペクトラル(PC実演)

複合現象(流体、混合、燃焼)

・炎と流体映像制作ソフト(PC実演)

流体力学のゲーム応用(その2)[12/35]

2次元完全流体(複素ポテンシャル論) 完全流体とは、非圧縮、粘性なし、粒子が非回転の流体 簡単な流れ場を複素ポテンシャル関数で表現可能 複素ポテンシャル関数=速度ポテンシャル関数 +1*流れ関数 W(z) =(X, Y) + 1 * (**x**, **y**) (1) 平行流【最も簡単な複素ポテンシャル関数】 複素/テンシャル異数W(Z)、(Z=X+i*Y=r*e^{i*} 速度ポテンシャル関数 W(Z) = Z流れ関数 複素がテンシャル異数、流れ異数 =X =Y流速 V(V_x、V_y) $V_x - i * V_y = \frac{dW}{R} = 1$ $V_{x} = 1$ $V_v = 0$

流体力学のゲーム応用(その2)[13/35]

2次元完全流体(複素ポテンシャル論)

(3)循環流

(2)吹出し(吸込み)

=const.

(流線)

=const.

 $V_r = \frac{m}{m}$

V = 0

W(Z) = i * * log(Z)

ャル線つ

= +i* \overrightarrow{e} \overrightarrow{e} = * $= * \log(r)$ \overrightarrow{m} \overrightarrow{w} $V(V_x, V_y) = V(V_y, V)$ $V_r - i*V = e^{i*} \frac{dW}{dZ} = e^{i*} \frac{i*}{Z} = \frac{i*}{r}$ $V_r = 0$ V = ---

y =const. (第ポテンシャ)レ線) (第ポテンシャ)レ線)

(4)二重吹出し

複素ポテンシャル関数:W(Z)、(Z = X + i * Y = r * eⁱ*) W(Z) = $\frac{a}{Z}$ = + i * 複素ポテンシャル関数:、流れ関数: = $\frac{ax}{X^2 + Y^2}$ $\frac{-ay}{X^2 + Y^2}$ 流速:V(V_x, V_y)=V(V_x, V) V_x - i * V_y = $\frac{dW}{dZ}$ = - $\frac{a}{Z^2}$ = - $\frac{a(X^2 - Y^2 - i * 2XY)}{(X^2 + Y^2)^2}$ V_x = - $\frac{a(X^2 - Y^2)}{(X^2 + Y^2)^2}$ V_y = - $\frac{2aXY}{(X^2 + Y^2)^2}$ 流体力学のゲーム応用(その2)[14/35]

W(Z) = U *
$$\left(\frac{Z-Z_0}{e^{i^*}} + \frac{b^2 e^{i^*}}{Z-Z_0}\right) + i^* + \log(Z-Z_0)$$

U:流れの速さ、:流れの角度、:渦の強さ b:円柱の半径、z₀:円柱の中心位置

流体力学のゲーム応用(その2)[15/35]

2次元完全流体(複素ポテンシャル論)

-2 揺動回転円柱の流れ場(理論式)

<u>複素ポテンシャル関数</u>:W(Z)、(Z = X + i * Y = r * e^{i *})

W(Z) = U *
$$\left(\frac{Z-Z_0}{e^{i^*}} + \frac{b^2 e^{i^*}}{Z-Z_0}\right)$$
 + i * * I og(Z-Z_0)

ただし、U:流れの速さ、:流れの角度、:渦の強さ b:円柱の半径、Z₀:円柱の中心位置

$$\begin{aligned} \hat{\pi}\bar{\boldsymbol{x}}: \mathsf{V}(\mathsf{V}_{\mathsf{x}}, \mathsf{V}_{\mathsf{y}}) \\ \mathsf{V}_{\mathsf{x}} - \mathsf{i} * \mathsf{V}_{\mathsf{y}} &= \frac{\mathsf{dW}}{\mathsf{dZ}} = \mathsf{U} * \left(\frac{1}{\mathsf{e}^{\mathsf{i}}^*} - \frac{\mathsf{b}^2\mathsf{e}^{\mathsf{i}}^*}{(Z-Z_0)^2} \right) + \mathsf{i} * * \frac{1}{Z} \\ \mathsf{V}_{\mathsf{x}} &= \mathsf{U} * \left[\cos - \frac{\mathsf{b}^2}{(X_1^2 + \mathsf{Y}_1^2)^2 + 4X_1^2\mathsf{Y}_1^2} \left\{ (X_1^2 - \mathsf{Y}_1^2)^* \cos + 2X_1\mathsf{Y}_1^* \sin \right\} \right] + \frac{*\mathsf{Y}_1}{X_1^2 + \mathsf{Y}_1^2} \\ \mathsf{V}_{\mathsf{y}} &= \mathsf{U} * \left[\sin + \frac{\mathsf{b}^2}{(X_1^2 + \mathsf{Y}_1^2)^2 + 4X_1^2\mathsf{Y}_1^2} \left\{ (X_1^2 - \mathsf{Y}_1^2)^* \sin - 2X_1\mathsf{Y}_1^* \cos \right\} \right] - \frac{*X_1}{X_1^2 + \mathsf{Y}_1^2} \\ \mathsf{t} \mathsf{t} \mathsf{t} \mathsf{t} \mathsf{t} \mathsf{b}, X_1 = \mathsf{X} - \mathsf{X}_0, \mathsf{Y}_1 = \mathsf{Y} - \mathsf{Y}_0 \end{aligned}$$

揺動回転円柱の流れ場のパーティクルの動き: $Z_{p(t)}(X_{p(t)}, Y_{p(t)}) = Z_{p(t+-t)}(X_{p(t+-t)}, Y_{P(t+-t)})$ $X_{p(t+-t)} = X_{p(t)} + V_{x(t)} * t$

 $\overline{Y_{p(t+t)}} = Y_{p(t)} + V_{y(t)} * t$

流体力学のゲーム応用(その2)[16/35]

2次元完全流体(複素ポテンシャル論) -1壁と円柱に沿った複数渦の流れ場(PC実演) 複素ポテンシャル関数:W(Z)、(Z = X + i * Y = r * e^{i *}) W(Z) = $\int_{P=1}^{4} \{(-1)^{P-1} * i * a^* \log(Z - Z_{ap}) + (-1)^{P} * i * a^* \log(Z - Z_{ap}^*)\}$ + $\int_{P=1}^{4} \{(-1)^{P-1} * i * b^* \log(Z - Z_{bp}) + (-1)^{P} * i * b^* \log(Z - Z_{bp}^*)\}$

ここで、Z_{a1}、Z_{b1}: Z平面の第1象限にある渦a、bの位置、 _a、 _b: 渦a、bの強さ Z_{ap} (p = 2 ~ 4): Z平面の第2 ~ 4象限にある渦aの壁面の鏡像渦の位置 Z^{*}_{ap} (p = 1 ~ 4): Z平面の第1 ~ 4象限にある渦aの円柱内の鏡像渦の位置

流体力学のゲーム応用(その2)[17/35]

2次元完全流体(複素ポテンシャル論)

-2 壁と円柱に沿った複数渦の流れ場(理論式)

複素ポテンシ₄ヤル関数:W(Z)、(Z = X + i * Y = r * eⁱ*) W(Z) = {(-1)^{p-1} * i * a* log(Z-Z_{ap}) + (-1)^p * i * a * log(Z-Z_{ap})} + $\frac{4}{p=1}$ {(-1)^{b-1} * i * b* log(Z-Z_{bp}) + (-1)^p * i * b * log(Z-Z_{bp})}

 $\begin{aligned} Z_{a1}, Z_{b1}: Z\Psi \overline{\mathbf{n}} \mathbf{0} \, \widehat{\mathbf{n}} \, \mathbf{1} \, \widehat{\mathbf{k}} \, \mathbb{R} [\mathbf{c} \mathbf{a} \mathbf{3}]_{a}, b \mathcal{O} \, \widehat{\mathbf{d}} \, \underbrace{\mathbf{2}}_{a_{1}} = X_{a} + \mathbf{i} * Y_{a} = \mathbf{r}_{a} * \mathbf{e}^{\dagger} * \mathbf{a}, Z_{b_{1}} = X_{b} + \mathbf{i} * Y_{b} = \mathbf{r}_{b} * \mathbf{e}^{\dagger} * \mathbf{b} \\ Z_{ap} \, (p = 2 \sim 4): Z\Psi \overline{\mathbf{n}} \, \mathbf{0} \, \widehat{\mathbf{n}} \, 2 \sim 4 \, \widehat{\mathbf{k}} \, \mathbb{R} [\mathbf{c} \mathbf{a} \mathbf{3}]_{a} \, \mathbf{0} \, \underline{\mathbf{2}} \, \overline{\mathbf{n}} \, \mathbf{0} \, \widehat{\mathbf{d}} \, \underline{\mathbf{2}} \\ Z_{a2} = - X_{a} + \mathbf{i} * Y_{a} = \mathbf{r}_{a} * \mathbf{e}^{\dagger} * (- \mathbf{a}), Z_{b_{2}} = - X_{b} + \mathbf{i} * Y_{b} = \mathbf{r}_{b} * \mathbf{e}^{\dagger} * (- \mathbf{a}), \\ Z_{a3} = - X_{a} - \mathbf{i} * Y_{a} = \mathbf{r}_{a} * \mathbf{e}^{\dagger} * (- \mathbf{a}), Z_{b3} = - X_{b} - \mathbf{i} * Y_{b} = \mathbf{r}_{b} * \mathbf{e}^{\dagger} * (- \mathbf{a}), \\ Z_{a3} = - X_{a} - \mathbf{i} * Y_{a} = \mathbf{r}_{a} * \mathbf{e}^{\dagger} * (2 - \mathbf{a}), Z_{b3} = - X_{b} - \mathbf{i} * Y_{b} = \mathbf{r}_{b} * \mathbf{e}^{\dagger} * (- \mathbf{a}), \\ Z_{a4} = + X_{a} - \mathbf{i} * Y_{a} = \mathbf{r}_{a} * \mathbf{e}^{\dagger} * (2 - \mathbf{a}), Z_{b4} = + X_{b} - \mathbf{i} * Y_{b} = \mathbf{r}_{b} * \mathbf{e}^{\dagger} * (2 - \mathbf{a}), \\ Z_{a4}^{*} = \mathbf{n} + X_{a} - \mathbf{i} * Y_{a} = \mathbf{r}_{a} * \mathbf{e}^{\dagger} (2 - \mathbf{a}), Z_{b4} = + X_{b} - \mathbf{i} * Y_{b} = \mathbf{r}_{b} * \mathbf{e}^{\dagger} * (2 - \mathbf{a}), \\ Z_{a1}^{*} \, (\mathbf{p} = 1 \sim 4): Z\Psi \, \mathbf{m} \, \mathcal{O} \, \widehat{\mathbf{m}} \, \mathbf{1} \sim 4 \, \widehat{\mathbf{m}} \, \mathbf{R} \, \mathbf{I} \, \mathbf{a} \, \mathcal{A} \, \widehat{\mathbf{m}} \, \mathbf{m} \, \mathbf{I} \, \mathbf{a} \, \mathcal{A} \, \widehat{\mathbf{m}} \, \mathbf{m} \, \mathbf{m} \, \mathbf{a} \, \mathbf{m} \, \mathbf{m} \, \mathbf{a} \, \mathbf{m} \,$

流速: V(V_x, V_y)

$$V_{x} - i * V_{y} = \frac{dW}{dZ} = {}^{4}_{p=1} \left\{ (-1)^{p-1} * i * {}_{a} * \frac{1}{Z-Z_{ap}} + (-1)^{p} * i * {}_{a} * \frac{1}{Z-Z_{ap}^{*}} \right\}$$

+ ${}^{4}_{p=1} \left\{ (-1)^{b-1} * i * {}_{b} * \frac{1}{Z-Z_{bp}} + (-1)^{p} * i * {}_{b} * \frac{1}{Z-Z_{bp}^{*}} \right\}$
 $(p = 1 \sim 4) \mathcal{O} \mathbf{B} dz, \frac{1}{Z-Z_{ap}} \mathbf{E} \frac{Z-Z_{ap}}{(\Gamma_{RANKINE})^{2}}, \mathbf{E} \mathbf{E} dz, \frac{1}{Z-Z_{bp}} \mathbf{E} \frac{Z-Z_{bp}}{(\Gamma_{RANKINE})^{2}} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$

渦aの移動速度:V_a(V_{ax}, V_{ay})

$$V_{ax} - i * V_{ay} = \frac{4}{p = 2} \left\{ (-1)^{p-1} * i * a^{*} \frac{1}{Z_{a1} - Z_{ap}} + (-1)^{p} * i * a^{*} \frac{1}{Z_{a1} - Z_{ap}^{*}} \right\} + \frac{4}{p = 1} \left\{ (-1)^{b-1} * i * b^{*} \frac{1}{Z_{a1} - Z_{bp}} + (-1)^{p} * i * b^{*} \frac{1}{Z_{a1} - Z_{bp}^{*}} \right\}$$

$$(FI) = \sqrt{(Y - Y)^{2} + (Y - Y)^{2}} = r = \pm t + t + \sqrt{(Y - Y)^{2} + (Y - Y)^{2}}$$

但し、 $\sqrt{(X_{a1} - X_{ap})^{-+}(Y_{a1} - Y_{ap})^{--}}$ $\Gamma_{RANKINE}$ 、または、 $\sqrt{(X_{a1} - X_{bp})^{-+}(Y_{a1} - Y_{bp})^{-}}$ $\Gamma_{RANKINE}$ (p = 1 ~ 4)の時、 $\frac{1}{Z_{a1}^{-}Z_{ap}}$ を $\frac{Z_{a1}^{-}Z_{ap}}{(\Gamma_{RANKINE})^{2}}$ 、または、 $\frac{1}{Z_{a1}^{-}Z_{bp}}$ を $\frac{Z_{a1}^{-}Z_{bp}}{(\Gamma_{RANKINE})^{2}}$ に置き換えて計算する。

濁bの移動速度: V_b(V_{bx}, V_{by})

V_{bx} - i * V_{by} = ⁴_{p=1} { (-1)^{p-1} * i * a* ¹/<sub>Z_{b1}-Z_{ap} + (-1)^p * i * a* ¹/<sub>Z_{b1}-Z_{ap} }

+ ⁴_{p=2} { (-1)^{b-1} * i * b* ¹/<sub>Z_{b1}-Z_{bp} + (-1)^p * i * b* ¹/<sub>Z_{b1}-Z_{bp} }

E U, $\sqrt{(X_{b1}-X_{ap})^2 + (Y_{b1}-Y_{ap})^2}$ F_{RANKINE} the transformation to the transformation tothetee transformation to the transformation to the tr</sub></sub></sub></sub>

えて計算する。

流体力学のゲーム応用(その2)[18/35]

2次元完全流体(複素写像変換)

-1 Joukowski<mark>変換による翼の流れ場(PC実演)</mark> 揺動回転円柱の流れ場の複素ポテンシャル関数:

W(Z) = U *
$$\left(\frac{Z-Z_0}{e^{i^*}} + \frac{b^2 e^{i^*}}{Z-Z_0}\right) + i^* * \log(Z-Z_0)$$

複素写像変換(Joukowski変換)

$$= Z + \frac{a^2}{Z}$$
$$= X + \frac{a^2 X}{X^2 + Y^2}$$
$$= Y - \frac{a^2 Y}{X^2 + Y^2}$$

◆ ここで、a: Joukowski変換パラメータ
 翼の流れ場の複素ポテンシャル関数:
 W()、(=+i*)

|流体力学のゲーム応用(その2)[19/35]

2次元完全流体(複素写像変換)

-2 Joukowski変換による翼の流れ場(理論式)

<mark>揺動回転円柱の流れ場の複素ポテンシャル</mark>関数∶W(Z)、 (Z = X + i * Y = r * e^{i *})

W(Z) = U *
$$\left(\frac{Z-Z_0}{e^{i^*}} + \frac{b^2 e^{i^*}}{Z-Z_0}\right) + i^* + \log(Z-Z_0)$$

ただし、U:流れの速さ、:流れの角度、:渦の強さ b:円柱の半径、Z₀:円柱の中心位置 揺動回転円柱の流れ場のパーティクルの動き:* Z_{p(t)}(X_{p(t)}, Y_{p(t)}) Z_{p(t+}t)(X_{p(t+}t), Y_{p(t+}t)) X_{p(t+}t) = X_{p(t)} + V_{x(t)} * t Y_{p(t+}t) = Y_{p(t)} + V_{y(t)} * t V_x = U * $\begin{bmatrix} \cos - \frac{b^2}{(X_1^2 + Y_1^2)^2 + 4X_1^2Y_1^2} \{ (X_1^2 - Y_1^2)^* \cos + 2X_1Y_1^* \sin \} \end{bmatrix} + \frac{*Y_1}{X_1^2 + Y_1^2}$ V_y = U * $\begin{bmatrix} \sin + \frac{b^2}{(X_1^2 + Y_1^2)^2 + 4X_1^2Y_1^2} \{ (X_1^2 - Y_1^2)^* \sin - 2X_1Y_1^* \cos \} \end{bmatrix} - \frac{*X_1}{X_1^2 + Y_1^2}$

ただし、 $X_1 = X - X_0, Y_1 = Y - Y_0$

翼の流れ場の複素ポテンシャル関数:W()、(=+i*) 翼の流れ場のパーティクルの位置: $_{p}(p, p)$ $_{p} = Z_{p} + \frac{a^{2}}{Z_{p}}$ 、(a:Joukowski変換のパラメータ) $_{p} = X_{p} + \frac{a^{2}X_{p}}{X_{p}^{2} + Y_{p}^{2}}$ $_{p} = Y_{p} - \frac{a^{2}Y_{p}}{X_{p}^{2} + Y_{p}^{2}}$ 流体力学のゲーム応用(その2)[20/35]

2次元完全流体(複素写像変換)

-1 拡張Lewis Form変換の流れ場(PC実演) 揺動回転円柱の流れ場の 複素ポテンシャル関数: $W(Z) = U * \left(\frac{Z - Z_0}{e^{i^*}} + \frac{b^2 e^{i^*}}{Z - Z_0}\right) + i^* * \log(Z - Z_0)$ 複素写像変換(拡張Lewis Form変換) $= M * \left(Z + \frac{a_1}{Z} + \frac{a_2}{Z^2} + \frac{a_3}{Z^3} + \frac{a_4}{Z^4} + \frac{a_5}{Z^5} \right)$ = M * $\left(r \cos + \frac{a_1}{r} \cos + \frac{a_2}{r^2} \cos 2 + \frac{a_3}{r^3} \cos 3 + \frac{a_4}{r^4} \cos 4 + \frac{a_5}{r^5} \cos 5 \right)$ = M * $\left(r \sin - \frac{a_1}{r} \sin - \frac{a_2}{r^2} \sin 2 - \frac{a_3}{r^3} \sin 3 - \frac{a_4}{r^4} \sin 4 - \frac{a_5}{r^5} \sin 5 \right)$ ここで、M、 a_1 、 a_2 、 a_3 、 a_4 、 a_5 は、 拡張Lewis Form変換のパラメータ 拡張Lewis Form変換の流れ場の 複素ポテンシャル関数: **W(**

|流体力学のゲーム応用(その2)[21/35]

2次元完全流体(複素写像変換)

-2 拡張Lewis Form変換の流れ場(理論式)

揺動回転円柱の流れ場の複素ポテンシャル関数:W(Z)、 (Z=X+i*Y=r*eⁱ

W(Z) = U *
$$\left(\frac{Z-Z_0}{e^{i^*}} + \frac{b^2 e^{i^*}}{Z-Z_0}\right) + i^* + \log(Z-Z_0)$$

ただし、U:流れの速さ、:流れの角度、:渦の強さ
 b:円柱の半径、Z₀:円柱の中心位置

揺動回転円柱の流れ場のパーティクルの動き:

$$Z_{p(t)}(X_{p(t)}, Y_{p(t)}) = Z_{p(t+-t)}(X_{p(t+-t)}, Y_{P(t+-t)})$$

$$X_{p(t+-t)} = X_{p(t)} + V_{x(t)} * t$$

$$Y_{p(t+-t)} = Y_{p(t)} + V_{y(t)} * t$$

$$V_{x} = U * \left[\cos - \frac{b^{2}}{(X_{1}^{2} + Y_{1}^{2})^{2} + 4X_{1}^{2}Y_{1}^{2}} \left\{ (X_{1}^{2} - Y_{1}^{2})^{*} \cos + 2X_{1}Y_{1} * \sin \right\} \right] + \frac{*Y_{1}}{X_{1}^{2} + Y_{1}^{2}}$$

$$V_{y} = U * \left[\sin + \frac{b^{2}}{(X_{1}^{2} + Y_{1}^{2})^{2} + 4X_{1}^{2}Y_{1}^{2}} \left\{ (X_{1}^{2} - Y_{1}^{2})^{*} \sin - 2X_{1}Y_{1} * \cos \right\} \right] - \frac{*X_{1}}{X_{1}^{2} + Y_{1}^{2}}$$

ただし、 $X_1 = X - X_0, Y_1 = Y - Y_0$

拡張Lewis Form変換の複素ポテンシャル関数:W()、(=+i*) 拡張Lewis Form変換の流れ場のパーティクルの位置: p(p, p) $p = M * \left(Z_p + \frac{a_1}{Z_p} + \frac{a_2}{Z_p^2} + \frac{a_3}{Z_p^3} + \frac{a_4}{Z_p^4} + \frac{a_5}{Z_p^5} \right)$ $p = M * \left(r_p \cos p + \frac{a_1}{r_p} \cos p + \frac{a_2}{r_p^2} \cos 2 p + \frac{a_3}{r_p^3} \cos 3 p + \frac{a_4}{r_p^4} \cos 4 p + \frac{a_5}{r_p^5} \cos 5 p \right)$ $p = M * \left(r_p \sin p - \frac{a_1}{r_p} \sin p - \frac{a_2}{r_p^2} \sin 2 p - \frac{a_3}{r_p^3} \sin 3 p - \frac{a_4}{r_p^4} \sin 4 p - \frac{a_5}{r_p^5} \sin 5 p \right)$ 流体力学のゲーム応用(その2)[22/35]

2次元完全流体(有限要素法)

有限要素法による流れ場の解法

流れ場の シミュレーション

$$Vx = \frac{1}{Y}, V_y = -\frac{1}{X}$$

境界条件:C1 (X, Y)= 、 境界条件:C2 $n = \left(\frac{n}{n}\right)$,

流体 力学のゲーム応用(その2)[23/35]

2次元完全流体(有限要素法)

-2
$$figgin (x, x) = 0$$
, $(x, y) = x^{2}$, $(x, y) = x^{2}$, $(x, y) = 0$
 $x + x = x^{2}$, $(y, y) = x^{2}$, $(x, y) = 0$
 $x + y = -\frac{1}{x}$, $(y, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, $(x, y) = 0$
 $(x, y) = -\frac{1}{x}$, (x, y) , (x, x) , (x, x) , (x, x) , (x, y) ,

2)

流体力学のゲーム応用(その2)[24/35]

2次元完全流体(有限要素法)

(3)

-3 循環流(有限要素法の理論式)

有限要素法

(偏微分方程式の境界値問題を変分問題に帰着させ、変分問題を近似的に解(方法)

微分方程式の境界値問題

下記の偏微分方程式の境界値問題を考える。

$$-\frac{1}{X}\left\{P(X, Y) - \frac{1}{X}\right\} + -\frac{1}{Y}\left\{P(X, Y) - \frac{1}{Y}\right\} - Q(X, Y) = F(X, Y)$$
(1)
$$\mathbf{\dot{g}}\mathbf{g}\mathbf{g}\mathbf{g}\mathbf{f}\mathbf{f}: \quad (X, Y) = {}_{0}(X, Y), \qquad (X, Y) = C_{1}$$
(2)

$$\frac{1}{n}$$
 + A(X, Y) = B(X, Y), (X, Y) C₂

上式で、

D:平面領域

- C₁:平面領域Dの境界(部分)
- C。: 平面領域Dの境界(部分)
- P(X,Y):平面領域Dにおける既知関数
- Q(X, Y): 平面領域Dにおける既知関数
- F(X,Y):平面領域Dにおける既知関数
- ₀(X,Y):境界C₁での既知関数
- A(X,Y) :境界C。での既知関数
- B(X,Y) :境界C,での既知関数

変分問題

(1)、(2)、(3)式に示す偏微分方程式の境界値問題は、(2)式の境界条件を満たす (X, Y) C²の中で、下記の汎関数を最小にする変分問題に帰着される。

$$J [] = \frac{1}{2} \int_{D} \left[P(X, Y) \left\{ \left(\frac{1}{X} \right)^{2} + \left(\frac{1}{Y} \right)^{2} \right\} + Q(X, Y) \right]^{2} + 2F(X, Y) dX dY$$
$$+ \int_{C_{2}} \left\{ \frac{1}{2} P(X, Y) A(X, Y) \right\}^{2} - P(X, Y) B(X, Y) dS$$
(4)

(証明略)

有限要素法

Ritz法により、(4)式の変分問題の解(X,Y)を、下記のように一次結合式で近似する。

$$(X, Y) = \prod_{j=1}^{N} \prod_{j=j}^{N} (X, Y)$$
 (5)

ここで、」は未知パラメータ、」(X, Y)は基底関数である。 基底関数 (X, Y)は、下記の条件を満足するものとする。

$$(Y) = y = 1 (i = j)$$
 (6)

= 0 (i j) (2)式が、C,上の節点P_i(X,, Y)について成立するものとみなすと

$$(X_{\mu}, Y_{i}) = \prod_{j=1}^{N} \int_{-1}^{1} (X_{\mu}, Y_{i}) = -_{0}(X_{\mu}, Y_{i})$$
(7)

(7)式を満たす (X, Y)のなかで、(4)式の汎関数J Ritz法により求める。(5)式を(4)式に代入する。

$$J \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1}{2} \int_{D} \left[P(X, Y) \left\{ \begin{pmatrix} N \\ ||_{p-1} & | & -X \end{pmatrix}^{2} + \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} \right\} + Q(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \end{pmatrix}^{2} + 2F(X, Y) \begin{pmatrix} N \\ ||_{p-1} & | & -Y \end{pmatrix}^{2} + 2F(X, Y) \end{pmatrix}^{2} + 2F($$

(8)式のJ を最小にする必要条件は

$$-\frac{J}{I} = {}_{D} \left[P(X, Y) \left\{ -\frac{I}{X} \begin{pmatrix} N \\ |-1| & -X \end{pmatrix} + \frac{I}{Y} \begin{pmatrix} N \\ |-1| & -Y \end{pmatrix} \right\} + Q(X, Y) \left[\begin{pmatrix} N \\ |-1| & -Y \end{pmatrix} + F(X, Y) \right] dXdY + c_{1} \left\{ P(X, Y) A(X, Y) \left[\begin{pmatrix} N \\ |-1| & -Y \end{pmatrix} + F(X, Y) \right] dXdY + c_{1} \left\{ P(X, Y) A(X, Y) \left[\begin{pmatrix} -1 \\ X \end{pmatrix} + \frac{I}{Y} + \frac{I}{Y} \right] + Q(X, Y) \left[-\frac{I}{X} + \frac{I}{Y} + \frac{I}{Y} \right] + Q(X, Y) \left[-\frac{I}{Y} \right] dXdY + c_{1} \left\{ P(X, Y) A(X, Y) \right] dX dY + c_{2} \left\{ P(X, Y) A(X, Y) \right] dX dY + c_{2} \left\{ P(X, Y) A(X, Y) - 1 \right\} dX dY + c_{2} \left\{ P(X, Y) A(X, Y) - 1 \right\} dX dY + c_{2} \left\{ P(X, Y) A(X, Y) - 1 \right\} dX dY + c_{3} \left\{ P(X, Y) A(X, Y) - 1 \right\} dX dY + c_{4} \left\{ P(X, Y) A(X, Y) - 1 \right\} dX dY + c_{5} \left\{ P(X, Y)$$

となり. (4)式の汎関数J | |を量小にする未知パラメータ」は、次の遺立一次方程式の解で **a**ð.

 $[K_{ij}]{-i} = \{G_i\}$

$$\begin{split} K_{ij} = & \begin{tabular}{l} & K_{ij} = & \begin{tabular}{l} & \left[P(X,Y) \left\{ \begin{array}{cc} \frac{1}{X} & \frac{1}{X} + \frac{1}{Y} & \frac{1}{Y} \end{array} \right] + & \begin{tabular}{l} Q(X,Y) & & \end{tabular} & \end{tabular} \\ & + & \begin{tabular}{l} & + & \end{tabular} \\ & + & \begin{tabular}{l} & P(X,Y) & A(X,Y) & & \end{tabular} & \end{tabular} \\ & + & \begin{tabular}{l} & A \\ & + & \begin{tabula$$

 $G_1 = -\sum_{D} F(X, Y) = \frac{1}{d} X dY + \sum_{D, i} \{ P(X, Y) B(X, Y) = i \} dS$

流体力学のゲーム応用(その2)[25/35]

3次元完全流体

-1 Vortex Ring(PC実演)

<mark>渦糸による誘起速度</mark>:dW_p (Biot-Savartの定理)

- 0 r_{pi} $r_{RANKINE}$ $dW_p = \frac{(sin)^3 dS_i \times r_{pi}}{4 (r_{RANKINE})^3}$
- $r_{RANKINE}$ r_{pi} $dW_p = \frac{dS_i \times r_{pi}}{4 (r)^3}$
- ただし、 :渦糸の強さ

 $r_{pi}: 渦糸までの距離 r_{pi} = (X_p - X_i, Y_p - Y_i, Z_p - Z_i)$ dS_i: 渦糸の微小部分 dS_i = (dX_i, dY_i, dZ_i) : 渦糸の方向角 sin = $\frac{dS_i \times r_{pi}}{|dS_i| \cdot |r_{pi}|}$ dW_p = (V_{px}, V_{py}, V_{pz}) r^p dW_p = (V_{px}, V_{py}, V_{pz}) dS_i = (dX_i, dY_i, dZ_i)

空気砲(Vortex Ring)の実験より 出典:宮田 佳則(新潟高校) http://www.infoniigata.or.jp/~ymiyata/genshi/e12smoke.htm |流体力学のゲーム応用(その2)[26/35]

3次元完全流体

 $dW_p = (V_{px}, V_{py}, V_{pz})$

流体力学のゲーム応用(その2)[27/35]

2次元粘性流体(Navier·Stokes方程式)

-1 流体ミニゲーム(ビデオ上映) 下記の2式(連続の式、Navier・Stokes方程式)

は、非線形連立変微分方程式で解析的は解けない

 $\cdot \mathbf{u} = \mathbf{0}$

$$\frac{u}{t} + (u \cdot)u = -p + \frac{1}{Re} u$$

Mac法に従い、圧力:Pに関するPoisson方程 式に変形してから、 Navier・Stokes方程式を時間的に数値積分し ていく

$$P_t = - \cdot (V_t \cdot \cdot \cdot) V_t + \frac{D_t}{t}$$

$$\frac{V_{t+t} - V_t}{t} + (V_t \cdot)V_t = - P_t + \frac{1}{Re} V$$

ミニゲーム(SwiQ)

流体力学のゲーム応用(その2)[28/35]

2次元粘性流体(Navier·Stokes方程式)

(1)

(2)

-2 流体ミニゲーム(理論式)

・Navier-Stokes方程式

水のような流動する連続体を表現する方程式は Navier-Stokes 方程式と呼ばれ次式で与えられる。

$$\frac{V}{t} + (V \cdot)V = \frac{1}{t} P + V$$

ここで、Vは流速(Vx, Vy, Vz)、Pは圧力、 は密度、 は流体の動 粘性係数である。また、 はnabla(スカラー関数の勾配)、 は laplacian(Laplaceの演算子)を表す。

$$=\left(\frac{1}{X}, \frac{1}{Y}, \frac{1}{Z}\right)$$
(3)
$$=\frac{2}{X^{2}} + \frac{2}{Y^{2}} + \frac{2}{Z^{2}}$$
(4)

(1)式は「連続の式」と呼ばれ質量保存則を表す。また、(2)式は運動 量保存則を表す。

流れを表す代表量として、長さをL、速度をU、圧力P₀を用いて、(1)、 (2)式を以下のように無次元化する。

 $\cdot \mathbf{V} = \mathbf{0}$

 $\frac{\tilde{V}}{\tilde{V}} + (\tilde{V} \cdot \tilde{V})\tilde{V} = -\tilde{P} + \frac{\tilde{V}}{U}\tilde{V}$

 $X = \tilde{X} L, Y = \tilde{Y} L, Z = \tilde{Z} L$ $V_{X} = \tilde{V}_{X} U, V_{y} = \tilde{V}_{y} U, V_{z} = \tilde{V}_{z} U$ $T = \tilde{t} \frac{L}{U}, P - P_{0} = \tilde{P} \quad U^{2}$ $T = \left(\frac{1}{\tilde{X}}, \frac{1}{\tilde{Y}}, \frac{1}{\tilde{Z}}\right)$ $T = \frac{2}{\tilde{X}^{2}} + \frac{2}{\tilde{Y}^{2}} + \frac{2}{\tilde{Z}^{2}}$ (8) (9)

(5)、(6)式において、UL/ が同じであれば、長さ、速度、動粘
 性係数が異なっていても、同じ運動方程式となる。UL/ は
 Reynolds数(Reと表記する)と呼ばれ、流れの相似則に用いられるパラメータである。

(5)、(6)式で表されるNavier-Stokes 方程式の特徴をあげる。

・左辺第2項が非線形となった楕円型偏微分方程式

・速度Vについては時間変化項があるが、圧力Pについて は時間変化項がない。

このため、Navier-Stokes 方程式を解析的に解くことが困難となっている。

非圧縮性 Navier-Stokes 方程式を数値的に解く方法として次

(5) の4種類がある。

圧力を消去する方法

圧力を独立に求める方法

(6) 擬似的な圧縮性を導入する方法

連続の式、Navier-Stokes 方程式を同時連立させて解く方法

本セミナーでは、の方法(Mac法)を用いた。

ここで、

流体力学のゲーム応用(その2)[29/35]

2次元粘性流体(Navier·Stokes方程式)

(10

(11)

-3 流体ミニゲーム(理論式)

Mac法による、Navier-Stokes 方程式の数値解法について述べる。 (6)式において、両辺のnabla(スカラー関数の勾配)をとる。ただし、無 次元量を表す"~"は省略している。

$$\frac{(\cdot V)}{t} + \cdot (V \cdot)V = -P + \frac{1}{Re} \cdot (V)$$

ここで、

$$(V) = \{(V, V) - X \times V\} = (V)$$

D= ·V

を用いると、

$$\frac{D}{t} + (V \cdot)V = -P + \frac{1}{Re}D$$

となる。

連続の式(1)式によれば、D=0となるが、(13)式を差分化して解く際、 離散化誤差が集積してDが大きな値とならないように、以下のような手続 きをとる。

(13)式について、時間tについての漸近式で表す。

$$\frac{\mathbf{D}_{t+t} - \mathbf{D}_{t}}{t} + \cdot (\mathbf{V}_{t} \cdot \mathbf{V}_{t}) = -\mathbf{P}_{t} + \frac{1}{\mathbf{R}\mathbf{e}} \mathbf{D}_{t}$$
(14)

(14)式において、Dtが0に近く、また、Reが十分大きいと考えられるので、
 1/Re・ Dt = 0とみなす。
 その時、(14)式において、D₁₊=0となるためには

 $\frac{-\mathbf{D}_{t}}{t} + \cdot (\mathbf{V}_{t} \cdot \mathbf{v})\mathbf{V}_{t} = -\mathbf{P}_{t}$

が、圧力Pについての条件式となる。

以上、水のような流動する連続体を表現する方程式は、次式を 解くこととなる。

$$P_{t} = - \cdot (V_{t} \cdot)V_{t} + \frac{\mathbf{D}}{t}$$
(16)

$$\frac{V_{t+t} - V_t}{t} + (V_t) V_t = -P_t + \frac{1}{Re} V_t$$
(17)

 (12) (16)式は、圧力Pに関するPoissonの方程式であり、時間tにおける速度Vtの分布が分かれば、圧力Pの分布が分かる。また、(17) 式により、時間tにおける速度Vtの分布と圧力Pの分布が分かれ
 (13) ば、時間t+ tにおける速度Vt + tの分布が分かることとなる。 流体力学のゲーム応用(その2)[30/35]

3次元粘性流体(Navier-Stokes方程式) -1 竜巻のシミュレーション(PC実演)

Rotation near the GroundのNavior・Stokes方程式: (出典:Boundary-Layer Theory by Dr. Hermann Schlichting) (注)厳密解が得られる稀有なNavier・Stokes方程式

1) Navior-Stokesの方程式

$$V_{r} \frac{V_{r}}{r} + V_{z} \frac{V_{r}}{z} - \frac{V^{2}}{r} = -\frac{1}{r} \frac{p}{r} + \left\{ \frac{2V_{r}}{r^{2}} + \frac{V_{r}}{r} \left(\frac{V_{r}}{r} \right) + \frac{2V_{r}}{z^{2}} \right\}$$
$$V_{r} \frac{V}{r} + V_{z} \frac{V}{z} + \frac{V_{r}V}{r} = \left\{ \frac{2V}{r^{2}} + \frac{V_{r}}{r} \left(\frac{V}{r} \right) + \frac{2V}{z^{2}} \right\}$$
$$V_{r} \frac{V_{z}}{r} + V_{z} \frac{V_{z}}{z} = -\frac{1}{r} \frac{p}{z} + \left\{ \frac{2V_{z}}{r^{2}} + \frac{1}{r} \frac{V_{z}}{r} + \frac{2V_{z}}{z^{2}} \right\}$$

2) 連続の式

$$\frac{V_r}{r} + \frac{V_r}{r} + \frac{V_z}{z} = 0$$

3) 境界条件 at z = 0 : V_r = 0, V = 0, V_z = 0 at z = : V_r = 0, V = r

流体力学のゲーム応用(その2)[31/35]

3次元粘性流体(Navier-Stokes方程式)

2 竜巻のシミュレーション(理論式)

地上近傍で中心に巻き込む流れがあり、、巻き上がっていく流体のNavior-Stokesの方程式 <u>は次式で与えられる。</u>

1)Navior-Stokesの方程式

$$\begin{array}{c} V_{r} \frac{V_{r}}{r} + V_{z} \frac{V_{r}}{z} - \frac{V^{2}}{r} = -\frac{1}{r} \frac{p}{r} + \left\{ \frac{2V_{r}}{r^{2}} + \frac{V_{r}}{r} \left(\frac{V_{r}}{r} \right) + \frac{2V_{r}}{z^{2}} \right\} \\ V_{r} \frac{V}{r} + V_{z} \frac{V}{z} + \frac{V_{r}V}{r} = \left\{ \frac{2V}{r^{2}} + \frac{V_{r}}{r} \left(\frac{V}{r} \right) + \frac{2V}{z^{2}} \right\} \\ V_{r} \frac{V_{z}}{r} + V_{z} \frac{V_{z}}{z} = -\frac{1}{r} \frac{p}{z} + \left\{ \frac{2V_{z}}{r^{2}} + \frac{1}{r} \frac{V_{z}}{r} + \frac{2V_{z}}{z^{2}} \right\}$$
(1)

2) 連鏡の式

3)境界条件			
at z = 0	$: V_r = 0, V$	$= 0, V_z = 0$	(3)
atz =	$: V_r = 0, V$	= 1	

(1)、(2)、(3)式において、

r、 、zは、半径方向、回転方向、鉛直方向の塵標 V₁、V 、V₂は、半径方向、回転方向、鉛直方向の速度 は、巻き込む流体の回転角速度

次に、以下の無次元座標を導入する。

$$z \sqrt{(-)}$$
 (4)

ここで、 は動粘性係数

渡速u,v,wを、(4)式で定義した無次元座標 を用いた関数F()、G()、H()を使っ て次のように表現する。 V,=r F()

$$V = r G()$$

$$w = \sqrt{H}()$$
(5)

半径方向の圧力の変化は、地上から離れた点での粘性のない流れの圧力変化を用いる。

$$\frac{1}{r} - \frac{p}{r} = \frac{V_r^2}{r} = r^{-2}$$
(6)

以上、(5)、(6)式を用いて、(1)、(2)、(3)式を書き直すと、次式が得られる。

$$F^{2} - G^{2} + H \frac{dF}{d} - \frac{d^{2}F}{d^{2}} + 1 = 0$$

$$2GF + H \frac{dG}{d} - \frac{d^{2}G}{d^{2}} = 0$$
(7)
$$2F + \frac{dH}{d} - 0$$

(7)、(8)式を多項式近似して得られた結果をテーブルに示す。

	F()	G()	Н()
0.000	0.000	0.000	0.000
0.500	-0.343	0.382	0.190
1.000	-0.468	0.731	0.614
1.500	-0.437	1.004	1.076
2.000	-0.318	1.175	1.460
2.500	-0.171	1.246	1.704
3.000	-0.038	1.242	1.800
3.500	0.056	1.192	1.784
4.000	0.106	1.123	1.702
4.500	0.117	1.056	1.590
5.000	0.103	1.003	1.478
5.500	0.074	0.969	1.390
6.000	0.041	0.954	1.332
6.500	0.013	0.953	1.308
7.000	-0.010	0.959	1.304
7.500	-0.020	0.975	1.320
8.000	-0.023	0.990	1.340
8.500	-0.020	1.000	1.364
9.000	-0.013	1.007	1.382
9.500	-0.006	1.010	1.390
10.000	0.000	1.009	1.390
10.500	0.003	1.007	1.386
11.000	0.004	1.005	1.382
11.500	0.003	1.002	1.380
12.000	0.001	1.000	1.380
12.500	0.000	1.000	1.380
	0.000	1.000	1.380

流体力学のゲーム応用(その2)[32/35]

-1 <u>短波頂不規則波のシミュレーション(PC実演)</u> 短波頂不規則波スペクトラム [f(,,)]² = k[f()]²cosⁿ (-<u>-</u>2

ISSCの海洋波スペクトラル (International Ship Structure Congress)

ISSCの海洋波スペクトラル 出典:造船設計便覧 [f(,)]²=0 (その他の場合) k及びnは定数で、ITTCでは暫定的に=---、n = 2

$$\left[f(-)\right]^{2} = 0.11 \text{ H}^{2} - \frac{1}{1} \left(\frac{1}{1}\right)^{-5} \text{EXP}\left[-0.44 \left(\frac{1}{1}\right)\right]^{-2}$$

流体力学のゲーム応用(その2)[33/35]

流体力学のゲーム応用(その2)[34/35]

-1 炎と流体映像制作ソフト(PC実演)

流体力学のゲーム応用(その2)[35/35]
複合現象(流体、混合、燃焼
-2 炎と流体映像制作ソフト
(理論式)
・非圧縮性流体運動方程式(NS方程式)

$$P_t = - \cdot (V_t \cdot)V_t + \frac{D_t}{t}$$
 (2-1)式
 $\frac{V_{t+t} - V_t}{t} + (V_{t'})V_t = - P_t + \frac{1}{Re} V_t$ (2-2)式
· 燃焼方程式(熱発生を伴う熱伝導方程式)
 $\frac{T_{t+t} - T_t}{t} + (V_t \cdot)T_t = \frac{1}{Pe} T_t + \tilde{T}_t$ (3)式
· 拡散方程式(反応を伴う濃度方程式)
 $\frac{C_{t+t} - C_t}{t} + (V_t \cdot)C_t = \frac{1}{Pe} C_t + \tilde{C}_t$ (4)式

