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Vertex Fetching

•Significant improvements in VS processing 
power

•More vertex processors
•Higher core clocks

•Memory improvements are smaller
•Bandwidth only somewhat improved
•Latency stays the same

•Starts emerging as a similar problem to 
random texture fetches



Vertex Caching

•Pre-transform cache on access to vertices 
in memory

•Reduces vertex fetch bandwidth
•Hides memory access latency

•More burden on vertex fetching and pre-
transform caching than ever before

•Reduce random memory access as much 
as possible



Geometry Optimization

•Always optimize your vertex data for cache 
friendliness

•Use D3DXMesh->Optimize()
•Use custom stripifier
•Reorder vertices for locality of access

•Try to align vertex data to 32 or 64 bytes 
boundaries whenever it makes sense

•Use as few streams as possible

•This is important as never before!



Vertex Shaders

•Full VS 3.0 support in Radeon X1x00

9500-X850 X1x00
VS version 2.0 3.0
Static flow control Yes Yes
Dynamic flow control No Yes
Instructions 256 1024
Constants 256 256



Static Flow Control in Vertex Shaders

•Static flow control
•Branching is known before shader execution

•Useful for shader management

•Driver can recompile shaders based on the 
Boolean constants

•Compiled shaders are cached

•Pre-cache all shaders based on the 
Booleans on the first frame



Dynamic Flow Control in Vertex Shaders

•Dynamic flow control (DFC)
•Branching is driven by the computations in the shader

•Two types
•Actual flow control instructions
•Predication

•Functionally not as important as in PS
•More architectural improvements went into PS

•Minimize use of DFC in VS

•Use a few short “if” statements or predications



Instancing

•First class citizen on SM 3.0 part, including 
all Radeon X1x00

•Some improvements for low polygon meshes
•All ATI’s DirectX® 9 parts also support it

•Render similar objects using common data

•Reduces number of batches
•Improvements to CPU bound cases



Why Are Small Polys Bad?

•The geometry throughput is huge:
•>600 Mtri/s

•Should we highly tessellate everything?
•Answer is NO!
•Tiny triangles are BAD for performance and visual quality!

•The smallest pixel processing chunk is 2x2 quad
•Small triangles = small quad population
•Wastes a lot of pixel pipe power

•Ideally 20-50 pixel per triangle, at least 10-15



Vertex Textures

•Optional SM 3.0 feature

•Radeon X1000 family doesn’t support 
vertex textures

•Use CheckDeviceFormat() with 
D3DUSAGE_QUERY_VERTEXTEXTURE to 
determine support

•Capped OFF for all texture formats



Render to VB

•Solves similar to Vertex Textures problems

•Very general approach
•Allows “aliasing” textures to VB and fetching 2D 
texture linearly

•Can even alias data types

2D texture
Vertex stream



Render to VB

•Allows rendering into a texture for 
subsequent use in VS as vertex buffer

•Implemented as an API extension
•Check support with FOURCC code

#define R2VB_FOURCC_R2VB MAKEFOURCC('R','2','V','B')

•Create RT texture with D3DUSAGE_DMAP flag
•Set stream source texture through DMAP sampler
•Stride and offset set as normal with dummy VB
•Enable R2VB settings through overloaded 
D3DRS_POINTSIZE render state



New in Texturing

•Bigger textures (4K x 4K)

•New formats
•ATI1N
•New Depth Texture format

•New fetch type
•Fetch-4

•Rotation-invariant anisotropic filtering
•Old, cheaper method is still supported
•No API control, driven by Control Panel settings



Texture Cache

•Texture cache is fully associative on X1x00
•Higher efficiency than before

•Always use mip-mapping!
•Especially true for volume textures

•Watch out for random access
•Will trash the texture cache
•Occurs e.g. when sampling an environment map 
from a bump map

•Use compressed formats
•DXT1-5, ATI1N, ATI2N (3Dc)



ATI1N

•ATI1N present on all X1x00 variants
•Single-channel compressed format
•Used for e.g. height maps, light maps, etc.
•2:1 compression ratio

•ATI1N has same encoding as DXT5 alpha 
block

xxx

A0 A1
xxx xxx xxx

xxx xxx xxx xxx
xxx xxx xxx xxx
xxx xxx xxx xxx

ATI1N block

xxx Color (A0<=A1) Color (A0>A1)
000 A0
001 A1
010 (4/5)*A0 + (1/5)*A1

(3/5)*A0 + (2/5)*A1

(2/5)*A0 + (3/5)*A1
(1/5)*A0 + (4/5)*A1

0
255

(6/7)*A0 + (1/7)*A1
011 (5/7)*A0 + (2/7)*A1

100 (4/7)*A0 + (3/7)*A1
101 (3/7)*A0 + (4/7)*A1
110 (2/7)*A0 + (5/7)*A1
111 (1/7)*A0 + (6/7)*A1



ATI1N

•Extracted color in red channel
•Not just a simple replacement for A8

•Accessible through FOURCC

#define FMT_ATI1N  MAKEFOURCC('A', 'T', 'I', '1')



Depth Textures (DST)

•Allows fetching depth buffer as texture
•Bind as depth buffer for rendering
•Bind as texture for fetching

•Useful for shadow mapping
•No need to output color = lower memory 
bandwidth

•Returns actual depth value from depth 
buffer

•Doesn’t have automatic PCF-like solutions
•Could be used for more than just shadow maps



Depth Textures (DST)

•16-bit format (DF16)
•Supported on all ATI DirectX® 9 cards
•Radeon X1800

•24-bit format (DF24)
•Radeon X1300 and X1600

•Uses Four-CC codes
#define FMT_DF16  MAKEFOURCC(‘D', ‘F', ‘1', ‘6')

#define FMT_DF24  MAKEFOURCC(‘D', ‘F', ‘2', ‘4')

•Create with CreateTexture() API
•Not with CreateDepthStencilSurface()!



Cool Stuff You Can Do With DST

•Shadow mapping

•Depth of field

•Smooth compositing of billboarded semi-
transparent objects 

•Fade out based on distance to scene

•Lens flares 

•Volumetric fog

•Many others



Fetch-4

•New feature of X1600 and X1300
•Not available in X1800

•Returns four neighboring texels in one 
fetch

•Closest 2x2 texel block
•Same texels as in bilinear fetch

•Single-channel textures only

•Point-sampled taps

•Perfect for PCF implementations



Fetch-4

•Four adjacent texels swizzled into RGBA 
channels

•Check for DF24 support for Fetch-4 
availability

•Enable/disable Fetch-4 by passing the 
following values to 
D3DTSS_MIPMAPLODBIAS sampler state
#define FOURCC_GET4  MAKEFOURCC('G','E','T','4')

#define FOURCC_GET1  MAKEFOURCC('G','E','T','1')

A R

G B
(R, G, B, A)



Cool Things You Can Do With Fetch-4

•Higher order filtering than bilinear

•Very large custom kernels

•Perlin noise evaulation

•Morphology / Edge filtering
•Fetching the 4-connected neighborhood takes 
2 fetches (vs. 5 nearest fetches)

•Fetching the 8-connected neighborhood takes 
4 fetches (vs. 9 nearest fetches)



Floating Point Surfaces

•D3DFMT_A16B16G16R16F render target 
blending

•Good render target for HDR implementations

•Multisampling supported as well!
•Ideal for HDR rendering without sacrificing 
quality

•Consider killing fragments when blending 
to FP16 with MSAA

•Only for short pixel shaders

•Implement fog in shaders



FP16 Filtering

•FP16 texture filtering not supported

•Use I16 formats for filtering
•Render to FP16
•Convert FP16->I16

•In rare cases when absolute precision is 
required could simulate filtering in shader

•This should be the last resort!
•Don’t do trilinear and anisotropic filtering in the 
shader



FP16 Filtering Emulation Code

•Example of the optimal filtering code
float2 texWidthHeight = {TEX_WIDTH, TEX_HEIGHT};
float4 texOffsets = {

-0.5/TEX_WIDTH+fudge, -0.5/TEX_HEIGHT+fudge,
0.5/TEX_WIDTH-fudge, 0.5/TEX_HEIGHT-fudge};

float4 tex2D_bilerp(sampler s, float2 texCoord)
{

float4 offsetCoord = texCoord.xyxy + texOffsets;
float2 fracCoord = frac(offsetCoord.xy * texWidthHeight);

float4 s00 = tex2D(s, offsetCoord.xy);
float4 s10 = tex2D(s, offsetCoord.zy);
float4 s01 = tex2D(s, offsetCoord.xw);
float4 s11 = tex2D(s, offsetCoord.zw);
s00 = lerp(s00, s10, fracCoord.x);
s01 = lerp(s01, s11, fracCoord.x);
s00 = lerp(s00, s01, fracCoord.y);
return s00;

}



10-bit Surfaces

•First-class citizen on all Radeon X1x00
•Supports blending, filtering and MSAA

•It is also displayable!
•Full screen only
•High fidelity visual outputs
•Benefits LCDs as well – high-quality dithering in 
display engine

•Perfect for not-so-high HDR (MDR)
•Fixed point 2.8 format
•Could use gamma correction to boost the range 
at small quality degradation



Multiple Render Targets

•X1x00 now supports separate color masks 
for Multiple Render Targets

•Indicated by D3DPMISCCAPS_ 
INDEPENDENTWRITEMASKS cap bit

•Set with SetRenderState()
•D3DRS_COLORWRITEENABLE0
•D3DRS_COLORWRITEENABLE1
•D3DRS_COLORWRITEENABLE2
•D3DRS_COLORWRITEENABLE3 



Pixel Shader

•New pixel shader architecture
•Advanced thread scheduler
•Full PS 3.0 support

•ALU based on proven R300 architecture 
with improvements

•Simultaneous ALU, TEX and FC execution

3 x FP32

3 x FP32 1 x FP32

1 x FP32

TEX FC



PS 3.0 Capabilities

•Full PS 3.0 support in Radeon X1x00

X800-X850 X1x00
PS version 2.x 3.0
Static flow control No Yes

Dependent reads 4 No limit
Face and position No Yes
Arbitrary swizzles No Yes
Temps 32 32

Dynamic flow control No Yes
Instructions 512 512

Constants 32 224



Shader Optimization Tips

•Compiler does a pretty good job optimizing 
shaders

•Don’t get hung up too much on hand-tuning

•Use swizzles and write masks to enable 
automatic co-issue

•Explicitly vectorize calculations
•Especially important for 2D+2D case in post-
processing shaders

•Use literal constants in shaders



Instruction Balancing

•New and exciting trend – bigger ALU:TEX 
ratio

•Easier to increase ALU power than memory 
bandwidth

•History trends support this

•X1800, X1300 aim at least at 4:1 ratio
•Simultaneous 1 macro-ALU + 1 TEX execution

•X1600 aim at least at 8:1 or even 12:1 ratio
•Simultaneous 3 macro-ALU + 1 TEX execution

•Expensive filtering skews ratio towards ALU



Static Flow Control in Pixel Shaders

•Same as in VS
•Useful for shader management
•Need pre-caching for the best runtime 
performance

•Why all this pre-caching anyway?
•The flow control instructions are relatively 
inexpensive, but…

•They limit compiler's ability to re-schedule 
instructions

•In extreme cases up to 50% performance loss



Dynamic Flow Control (DFC) in Pixel 
Shaders

•One the most important features of PS 3.0
•Major architectural improvements in X1x00

•First class citizen
•Almost “free” flow control instructions
•Smallest execution thread granularity

•X1800: 16 pixels
•X1900: 48 pixels



Why is efficient DFC hard?

•GPU are massively parallel 
•Smallest processing element is 2x2
•Actual threads have multiple quads
•All pixels in the thread follow all executed 
paths

•Does it mean DFC is bad?
•No, just have to be careful



Using DFC in Pixel Shaders

•Ensure reasonable coherency of execution

•Use DFC for optimizations – skip 
unnecessary computations and fetches

•if (dot(N, L)>0) …
•if (!bInShadow) …
•if (DistanceFromLight<Falloff) …
•Early out with alpha testing

•Avoid many small conditionals

•No loops and less than 6 nested levels of 
branching goes into fast path mode 



Predication in Pixel Shaders

•Predication – flow control technique in 
vector processors

•Based on conditionals control vector 
instruction execution per-channel

•No need to explicitly use it
•DirectX® spec is flexible, compiler can convert 
predication <-> flow control statements



Screen Gradients

•Gradient computations use 2x2 quad
•With DFC pixels in the quad could go down different 
paths resulting in ambiguous results

•Nothing that computes gradients can reside inside 
flow control

•Fetches based on computed coordinates
•Gradients of computed values

•Interpolated texture coordinates are OK
•Otherwise use texldl, texldd and etc.

•Failure to comply will remove DFC from shader 
code in HLSL or will fail in ASM



Optimal HLSL Use

•For VS use:
•D3DXSHADER_AVOID_FLOW_CONTROL 
compiler flag

•/Gfa command line option

•For PS use:
•D3DXSHADER_PREFER_FLOW_CONTROL 
compiler flag

•/Gfp command line option



Hyper-Z Technology

•Fast Z clear

•Z compression

•Hierarchical Z

•Early Z testing



Z Compression and Fast Clears

•Fast Z Clears
•Z and stencil buffer are contained in the same surface
•Clear Z and stencil together

•Compressed Z buffer
•Z buffer values are block-compressed to save Z 
bandwidth

•Lossless compression
•Main Z buffer automatically compressed for performance
•Depth textures are not compressed (DF16, DF24)



Hierarchical Z

•Keeps the max or min Z value per block in on-chip memory

•Depth compare is performed per-block (tile)
• If incoming Z values are greater/smaller than block Z then the 

triangle portion is hidden
• Else triangle is split into smaller blocks

•Allows fast Z culling of whole (or portions of) triangles
• Doesn’t work with PS depth output
• Can break if Z compare modes are reversed

•Render alpha-tested/texkill primitives after opaque ones
• This increases the chance of those being rejected by HiZ

culling

•Make Z near/far range as close to geometry as possible



Early Z Testing

•Ability to reject pixels before shading them

•Independent of Hierarchical-Z

•Early Z doesn’t work in two cases
•When shader outputs depth
•When alpha-test or texkill is used

•Sort front-to-back or consider depth-only 
pass



HDR on Radeon X1000



What is HDR?

•High Dynamic Range

•Dynamic range is ratio of brightest to 
darkest values

•HDR has dynamic range greater than 255:1 
used in “normal” rendering

•Usually HDR requires greater than [0..1] 
range

•Allows seeing details in both shadows and 
bright areas



Radeon X1x00 Capabilities

•I10 formats
•Filtering
•Blending
•MSAA

•I16 formats
•Filtering

•FP16 (4-channel)
•Blending
•MSAA

•I16 complements FP16 in terms of functionality



Good Low-End Implementation
on Radeon X1300- X1600

•Perfect for MDR

•Use I10 for rendering with MSAA
•E.g. use 2.8 fixed point format
•Gamma correction can give bigger range

•Resolve to I10 buffer to be used for further 
post-processing

•For intermediate post-processing steps 
could use I10 or I16 (both are filterable)

•Use I10 or I8 for final display



Good High-End Implementation
on Radeon X1600- X1900

•Use FP16 for rendering with MSAA

•Use alternative HDR format 
representations for textures

•Resolve and copy to I16 buffer to be used 
for further post-processing

•For intermediate post-processing steps 
could use I10 or I16 (both are filterable)

•Use I10 for final display



Is I16 Good Enough For Post-Processing 
and Texturing?

•In majority of cases – YES!

•Represents 65535:1 dynamic range

•For limited ranges better precision than FP16 (16 
vs. 10 bits)

•Many more bits than will be actually displayed
•Many bits to spare for post-processing

•There are some really cool solutions based on 
integer formats

•E.g. expanded range support using integer formats



How Do You Do It?

•Many different methods Fixed scaling
•RGBS
•RGBE
•Compressed RGBE 
•PPP
•RGBS+PPP
•EEE

•Examples use extreme range of values – up 
to [0.004, 76800.0]

•That’s 19,200,000:1 dynamic range!
•Extreme exposure (night sky looks like daylight)



Fixed Scaling

•Use I16 with a simple scale
•E.g. fixed point 8.8 format

•Pros 
•Range up to 0..255 with good precision (8.8)
•Works well for over-brightening
•In practice can tolerate a bit of range clamping
•Matches bilinear filtering of FP16
•The simplest and cheapest method for both 
encoding and decoding

•Cons
•Fails for large ranges



•Encoding

•Decoding

// Convert to [0..1] range
color.rgb *= invMaxValue;

// Decode to full range
float3 tex = tex2D(Texture, texCoord).rgb;
tex.rgb *= maxValue;

Fixed Scaling Implementation



Fixed Scaling Example



RGBS Format

•Store common variable scale factor in the 
alpha channel

•Floating point with linear range distribution

•Pros
•Cheap decoding (2 instr.)
•Better range than with a fixed scale
•Overall pretty good quality for reasonably large 
ranges

•Cons
•Fails for extremely large ranges
•Fairly expensive encoding (up to 9 instr.)



RGBS Implementation

•Encoding

•Decoding

// Might need to clamp
color.rgb = min(color.rgb, maxValue);
// Find max value
float maxChannel = max(max(color.r, 
color.g), color.b);
// Move scale to alpha
color.rgb /= maxChannel;
color.a = maxChannel * invMaxValue;

// Decode to full range
float4 tex = tex2D(Texture, texCoord);
tex.rgb *= tex.a * maxValue;



Improved RGBS

•Precision problem in darker parts
•Too few bits for scale of dark values
•This is because color uses max bits available

•Redistributing bits between color and scale
•Try to use similar number of bits for both
•Use adjustment factor

•Divide color by the adjustment
•Multiply scale by the adjustment

Af
f

BGR
⋅=

),,max(
A
1

Adjustment:   f =



Improved RGBS Implementation

•Encoding
// Might need to clamp
color.rgb = min(color.rgb, maxValue);
// Find max value
float maxChannel = max(max(color.r, 
color.g), color.b);
// Move scale to alpha
color.rgb /= maxChannel;
color.a = maxChannel * invMaxValue;
// Redistribute bits
color.a *= rsqrt(color.a);
color.rgb *= color.a;



RGBS Format Example



Wouldn’t It Break Filtering?

•Yes, it breaks bilinear filtering, but that’s not 
really a problem

•Bilinear filter is far from perfect for reconstructing 
signals

•Bilinear is used because it’s cheap and “good enough”
(makes images look smooth)

•There are better filters
•Just compare bilinear and bicubic…



Wouldn’t It Break Filtering?

•These methods don’t match bilinear filter
•… but they achieve the same goal

•Pros
•Make images look smooth
•When dealing with HDR non-linearity not 
always a bad thing

•Cons
•Could produce slight haloing in cases of very 
rapid value changes (rarely a huge problem)

•Might need some tweaking to make it look the 
best



Filtering Comparison (RGBS)



Summary of HDR Formats

•Check out HDR Texturing whitepaper

•Pick method that works the best
•Quality vs. cost tradeoff

Method Encod.

instr.

Decod.

Instr.

Free

Alpha

Range Filter

quality

Overall

quality

+++ +

+

+++

++

+++

++

++

+

+++

++

+

Fixed scale 1 1 Yes Low

RGBS 5-9 2 No Med

RGBE 5-6 3 No High

PPP 5/8 2/8 Yes High

RGBS+PPP 10-14 3 No High

EEE 4 4 Yes High



Shadow mapping on Radeon 
X1000



Shadow Mapping

• Shadow map: render depth from the light’s point of view

• Render the scene from the eye’s point of view
• Project the shadow map onto the scene using the light space 

transform.
• Transform the current position into light space, and compare its

depth values with the depth values stored in the shadow map

Shadow Map Scene With Shadow Map



•A standard issue with shadow mapping is 
aliasing

• Raising shadow map resolution is expensive

Aliasing



•Helps with aliasing problem

•Use multiple samples from the shadow map

•First compare then perform filtering

1-Tap Hard Shadowmapping 4x4 (16-tap) PCF

Percentage Closer Filtering (PCF)



PCF Optimization: Step 1

•Processing multiple taps in parallel
//Projected coords
projCoords = oTex1.xy / oTex1.w;

//Sample nearest 2x2 quad
shadowMapVals.r = tex2D(ShadowSampler, projCoords);
shadowMapVals.g = tex2D(ShadowSampler, projCoords +

texelOffsets[1].xy * g_vFullTexelOffset.xy);
shadowMapVals.b = tex2D(ShadowSampler, projCoords +

texelOffsets[2].xy * g_vFullTexelOffset.xy);
shadowMapVals.a = tex2D(ShadowSampler, projCoords +

texelOffsets[3].xy * g_vFullTexelOffset.xy);

//Evaluate shadowmap test on quad of shadow map texels 
inLight = (dist < shadowMapVals);

//Percent in light
percentInLight = dot(inLight, float4(0.25, 0.25, 0.25, 0.25));



PCF Optimization: Step 2

•Take advantage of “Fetch-4”
// Sample nearest 2x2 quad
// (using 2x2 neighborhood fetch into .rgba )
shadowMapVals.rgba = tex2Dproj(ShadowSampler, projCoords);

//Evaluate shadowmap test on quad of shadow map texels 
inLight = (dist < shadowMapVals);

//Percent in light
percentInLight = dot(inLight, float4(0.25, 0.25, 0.25, 0.25));



• In basic PCF has a limited number of intensity levels:
• 2x2 PCF = 4 intensity levels
• 4x4 PCF = 16 intensity levels
• 6x6 PCF = 36 intensity levels
• 8x8 PCF = 64 intensity levels

• Cheap alternative: area filter

4x4 (16-tap) PCF
4x4 (16-tap) Blended Edge 

Tap PCF

Edge Tap Smoothing



Edge Tap Smoothing

• 3x3 area filter with 16 taps

• Can be optimized using fetch-4 (4 fetches)

• Fast alternative to bicubic, Gaussian, or other higher 
order kernels

Sub-texel 
offset in U

Sub-texel offset in V



• Grid based PCF kernel needs to be fairly large to 
eliminate aliasing artifacts

• Need fewer samples with non-uniform sampling

4x4 (16-tap) PCF (12-tap) Randomized Offset PCF

Non-grid Based PCF Offsets



•Store tap offsets from center of the kernel as 
constants

12-tap fixed disk PCF12-tap disk PCF 4x4 (16 tap) PCF

Non-Uniform Disc Sampling



Randomized PCF Offsets

•Changing random offsets per frame has 
undesirable “TV noise” effect

•Precompute random values in screen 
aligned texture:

•When scene is static, randomness in penumbra 
is static

•Unique per pixel rotation of the disc kernel 
works well

•Preserves distances in between taps in the 
kernel

•Make sure no tap is directly in the center



• Use screen space location as random seed

• Look up in “random” rotation texture

Example 64x64 unique 
rotation texture

red=cos(x)  
green=sin(x)

12-tap fixed disk 
PCF

12-tap per-pixel 
uniquely rotated 

disk PCF

Rotated Disk Kernel



Shadow Map Filtering Mask

•Need to use expensive filter only on the 
shadow edges

•Use flow control in PS to skip expensive 
computations

•Trivially compute full shadow and lighting

•Use shadow mask



N·L < 0 Shadow Edge Filter Union of all three masksGobo == 0

Only the white pixels 
execute the expensive path

Shadow Mask Construction

•Combine several trivial rejections together



Edge Mask

•Penumbra regions only near depth discontinuities 
(edges) on the shadow map

•Find edges based on depth

•Dilate edge map to at least the width of the 
filtering kernel



Edge Mask Dilation

•Use bilinear filter for mask expansion

•Use lower mip level for mask testing
•PCF kernel size determines mip-level
•Test mask for non-zero values for detecting 
penumbra regions

16x16 8x8 4x4 2x2 1x1



Scene Depth Complexity

Penumbra/ shadow 
edge regions with 

needed high quality PCF Fully occluded 
regions receiving 

unnecessary 
high quality PCF  

processing

Solid objects

Edge mask 
projections onto 

the scene

•Edge mask works well only for low depth 
complexity



Penumbra/ shadow 
edge regions

Solid objects

Projected edge 
regions with 
depth extent

Depth Extent Masking

•Compute min/max depths for the region

•Propagate min/max values during dilation

•Similar to hierarchical Z



//compute lighting for the point on the surface
lightVal = ComputeLighting(oTex1, dist, oTex2, oTex0);    

//if there is no light hitting this surface, then return 0
if (dot(lightVal, float3(1, 1, 1)) == 0) {

return 0;  //no lighting, return 0
}
else {

//fetch from depth extent texture
projCoords.zw = g_fEdgeMaskMipLevel;
edgeValMinMax = tex2Dlod(EdgeMipSampler, projCoords).rg;

if ((edgeValMinMax.r < dist) && (edgeValMinMax.g > dist)) {
//perform high quality PCF filtering here and return
//  . . . . . . . . . 

}
else {

//perform single tap shadow mapping here and return
//  . . . . . . . . . 

}
}

Depth Extent Masking Example



Too Little Bias: Surface Acne Too Much Bias: Floating Shadow

•Need to bias depth comparison

•Picking right bias value is hard
•Too little: surface acne
•Too much: disconnected shadows

Shadow Map Bias



Light Source

Scene Geometry

Depth of shadow map 
texels projected onto 
the scene.

Two Components of Bias

•Numeric: due to the shadow map precision

•Geometric: due to representing an area of texel projection 
with a single depth value

•Bias depends on the shadow map resolution, slope of the 
scene to the light source, and precision of depth map



Slope Based Bias

•Use Z bias for DF16 and DF24 formats

•Couls use gradients to compute bias in PS

•Large kernels could exhibit surface acne 
and disconnects at the same time

•Standard biasing strategy breaks down…

ddistdx = ddx(dist);
ddistdy = ddy(dist);
dist += g_fSlopeBias * abs(ddistdx);
dist += g_fSlopeBias * abs(ddistdy);



Light Source

Shadow map compare value 
computed for the current pixel.

Receiver GeometryShadow Map Texels

•For large PCF kernel, using a single depth 
comparison value across the kernel is 
insufficient

Receiver Plane Depth Bias



Light Source

Desired Shadow map compare value 
taking into account receiver 
depth variation across kernel.

Receiver GeometryShadow Map Texels

•Vary depth value across the kernel to match the 
receiver plane

•Need to know how much the depth changes with 
respect to shadow map texture coordinates

Receiver Plane Depth Bias
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Texture space Jacobian
(inverse-transpose) Derivative of distance to 

light source w.r.t. 
screen coordinates 

Derivative of distance 
to light source w.r.t. 
texture coordinates 

Receiver Plane Depth Bias

•Compute texture space Jacobian:
•Derivative of texture coordinates with respect to screen 
coordinates

•Use as a transform matrix to find derivative of 
distance to light source w.r.t. texture coordinates 



8x8 PCF without 
adjustment

8x8 PCF with receiver 
plane depth bias

Receiver Plane Depth Bias



//Packing derivatives of u,v, and distance to light source w.r.t. screen space x, and y
duvdist_dx = ddx(projCoords);
duvdist_dy = ddy(projCoords);

//Invert texture Jacobian and use chain rule to compute ddist/du and ddist/dv
//  |ddist/du| = |du/dx du/dy|-T  * |ddist/dx|
//  |ddist/dv|   |dv/dx dv/dy|      |ddist/dy|

//Multiply ddist/dx and ddist/dy by inverse transpose of Jacobian
float invDet = 1 / ((duvdist_dx.x * duvdist_dy.y) - (duvdist_dx.y * duvdist_dy.x) );

//Top row of 2x2
ddist_duv.x = duvdist_dy.y * duvdist_dx.w ;   // invJtrans[1][1] * ddist_dx
ddist_duv.x -= duvdist_dx.y * duvdist_dy.w ;  // invJtrans[1][2] * ddist_dy

//Bottom row of 2x2
ddist_duv.y = duvdist_dx.x * duvdist_dy.w ;   // invJtrans[2][2] * ddist_dy
ddist_duv.y -= duvdist_dy.x * duvdist_dx.w ;  // invJtrans[2][1] * ddist_dx
ddist_duv *= invDet;

//compute depth offset and PCF taps 4 at a time
for(int i=0; i<9; i++)
{

//offset of texel quad in texture coordinates;
texCoordOffset = (g_vFullTexelOffset * quadOffsets[i] ); 
//shadow map values
shadowMapVals = tex2D(ShadowSampler, projCoords.xy + texCoordOffset.xy );

//Apply receiver plane depth offset
dist = projCoords.w + (ddist_duv.x * texCoordOffset.x) + (ddist_duv.y * texCoordOffset.y);

inLight = ( dist < shadowMapVals );
percentInLight += dot(inLight, invNumTaps);    

}

Implementation



Conclusions

•Radeon X1000 tricks and optimizations

•HDR on Radeon X1000

•Shadow mapping on Radeon X1000



Questions
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