
Coding Tricks and
Optimizations for
Radeon X1000 Series

Guennadi Riguer

Outline

•Radeon X1000 tricks and optimizations

•HDR on Radeon X1000

•Shadow mapping on Radeon X1000

Optimizations

Vertex Processing

•Pipeline architecture

•Vertex processor architecture

Vertex
Fetcher

Vertex
Cache VS Vertex

Cache

(Pre-transform) (Post-transform)

Flow
Control 4D ALU 1D ALU

Vertex Fetching

•Significant improvements in VS processing
power

•More vertex processors
•Higher core clocks

•Memory improvements are smaller
•Bandwidth only somewhat improved
•Latency stays the same

•Starts emerging as a similar problem to
random texture fetches

Vertex Caching

•Pre-transform cache on access to vertices
in memory

•Reduces vertex fetch bandwidth
•Hides memory access latency

•More burden on vertex fetching and pre-
transform caching than ever before

•Reduce random memory access as much
as possible

Geometry Optimization

•Always optimize your vertex data for cache
friendliness

•Use D3DXMesh->Optimize()
•Use custom stripifier
•Reorder vertices for locality of access

•Try to align vertex data to 32 or 64 bytes
boundaries whenever it makes sense

•Use as few streams as possible

•This is important as never before!

Vertex Shaders

•Full VS 3.0 support in Radeon X1x00

9500-X850 X1x00
VS version 2.0 3.0
Static flow control Yes Yes
Dynamic flow control No Yes
Instructions 256 1024
Constants 256 256

Static Flow Control in Vertex Shaders

•Static flow control
•Branching is known before shader execution

•Useful for shader management

•Driver can recompile shaders based on the
Boolean constants

•Compiled shaders are cached

•Pre-cache all shaders based on the
Booleans on the first frame

Dynamic Flow Control in Vertex Shaders

•Dynamic flow control (DFC)
•Branching is driven by the computations in the shader

•Two types
•Actual flow control instructions
•Predication

•Functionally not as important as in PS
•More architectural improvements went into PS

•Minimize use of DFC in VS

•Use a few short “if” statements or predications

Instancing

•First class citizen on SM 3.0 part, including
all Radeon X1x00

•Some improvements for low polygon meshes
•All ATI’s DirectX® 9 parts also support it

•Render similar objects using common data

•Reduces number of batches
•Improvements to CPU bound cases

Why Are Small Polys Bad?

•The geometry throughput is huge:
•>600 Mtri/s

•Should we highly tessellate everything?
•Answer is NO!
•Tiny triangles are BAD for performance and visual quality!

•The smallest pixel processing chunk is 2x2 quad
•Small triangles = small quad population
•Wastes a lot of pixel pipe power

•Ideally 20-50 pixel per triangle, at least 10-15

Vertex Textures

•Optional SM 3.0 feature

•Radeon X1000 family doesn’t support
vertex textures

•Use CheckDeviceFormat() with
D3DUSAGE_QUERY_VERTEXTEXTURE to
determine support

•Capped OFF for all texture formats

Render to VB

•Solves similar to Vertex Textures problems

•Very general approach
•Allows “aliasing” textures to VB and fetching 2D
texture linearly

•Can even alias data types

2D texture
Vertex stream

Render to VB

•Allows rendering into a texture for
subsequent use in VS as vertex buffer

•Implemented as an API extension
•Check support with FOURCC code

#define R2VB_FOURCC_R2VB MAKEFOURCC('R','2','V','B')

•Create RT texture with D3DUSAGE_DMAP flag
•Set stream source texture through DMAP sampler
•Stride and offset set as normal with dummy VB
•Enable R2VB settings through overloaded
D3DRS_POINTSIZE render state

New in Texturing

•Bigger textures (4K x 4K)

•New formats
•ATI1N
•New Depth Texture format

•New fetch type
•Fetch-4

•Rotation-invariant anisotropic filtering
•Old, cheaper method is still supported
•No API control, driven by Control Panel settings

Texture Cache

•Texture cache is fully associative on X1x00
•Higher efficiency than before

•Always use mip-mapping!
•Especially true for volume textures

•Watch out for random access
•Will trash the texture cache
•Occurs e.g. when sampling an environment map
from a bump map

•Use compressed formats
•DXT1-5, ATI1N, ATI2N (3Dc)

ATI1N

•ATI1N present on all X1x00 variants
•Single-channel compressed format
•Used for e.g. height maps, light maps, etc.
•2:1 compression ratio

•ATI1N has same encoding as DXT5 alpha
block

xxx

A0 A1
xxx xxx xxx

xxx xxx xxx xxx
xxx xxx xxx xxx
xxx xxx xxx xxx

ATI1N block

xxx Color (A0<=A1) Color (A0>A1)
000 A0
001 A1
010 (4/5)*A0 + (1/5)*A1

(3/5)*A0 + (2/5)*A1

(2/5)*A0 + (3/5)*A1
(1/5)*A0 + (4/5)*A1

0
255

(6/7)*A0 + (1/7)*A1
011 (5/7)*A0 + (2/7)*A1

100 (4/7)*A0 + (3/7)*A1
101 (3/7)*A0 + (4/7)*A1
110 (2/7)*A0 + (5/7)*A1
111 (1/7)*A0 + (6/7)*A1

ATI1N

•Extracted color in red channel
•Not just a simple replacement for A8

•Accessible through FOURCC

#define FMT_ATI1N MAKEFOURCC('A', 'T', 'I', '1')

Depth Textures (DST)

•Allows fetching depth buffer as texture
•Bind as depth buffer for rendering
•Bind as texture for fetching

•Useful for shadow mapping
•No need to output color = lower memory
bandwidth

•Returns actual depth value from depth
buffer

•Doesn’t have automatic PCF-like solutions
•Could be used for more than just shadow maps

Depth Textures (DST)

•16-bit format (DF16)
•Supported on all ATI DirectX® 9 cards
•Radeon X1800

•24-bit format (DF24)
•Radeon X1300 and X1600

•Uses Four-CC codes
#define FMT_DF16 MAKEFOURCC(‘D', ‘F', ‘1', ‘6')

#define FMT_DF24 MAKEFOURCC(‘D', ‘F', ‘2', ‘4')

•Create with CreateTexture() API
•Not with CreateDepthStencilSurface()!

Cool Stuff You Can Do With DST

•Shadow mapping

•Depth of field

•Smooth compositing of billboarded semi-
transparent objects

•Fade out based on distance to scene

•Lens flares

•Volumetric fog

•Many others

Fetch-4

•New feature of X1600 and X1300
•Not available in X1800

•Returns four neighboring texels in one
fetch

•Closest 2x2 texel block
•Same texels as in bilinear fetch

•Single-channel textures only

•Point-sampled taps

•Perfect for PCF implementations

Fetch-4

•Four adjacent texels swizzled into RGBA
channels

•Check for DF24 support for Fetch-4
availability

•Enable/disable Fetch-4 by passing the
following values to
D3DTSS_MIPMAPLODBIAS sampler state
#define FOURCC_GET4 MAKEFOURCC('G','E','T','4')

#define FOURCC_GET1 MAKEFOURCC('G','E','T','1')

A R

G B
(R, G, B, A)

Cool Things You Can Do With Fetch-4

•Higher order filtering than bilinear

•Very large custom kernels

•Perlin noise evaulation

•Morphology / Edge filtering
•Fetching the 4-connected neighborhood takes
2 fetches (vs. 5 nearest fetches)

•Fetching the 8-connected neighborhood takes
4 fetches (vs. 9 nearest fetches)

Floating Point Surfaces

•D3DFMT_A16B16G16R16F render target
blending

•Good render target for HDR implementations

•Multisampling supported as well!
•Ideal for HDR rendering without sacrificing
quality

•Consider killing fragments when blending
to FP16 with MSAA

•Only for short pixel shaders

•Implement fog in shaders

FP16 Filtering

•FP16 texture filtering not supported

•Use I16 formats for filtering
•Render to FP16
•Convert FP16->I16

•In rare cases when absolute precision is
required could simulate filtering in shader

•This should be the last resort!
•Don’t do trilinear and anisotropic filtering in the
shader

FP16 Filtering Emulation Code

•Example of the optimal filtering code
float2 texWidthHeight = {TEX_WIDTH, TEX_HEIGHT};
float4 texOffsets = {

-0.5/TEX_WIDTH+fudge, -0.5/TEX_HEIGHT+fudge,
0.5/TEX_WIDTH-fudge, 0.5/TEX_HEIGHT-fudge};

float4 tex2D_bilerp(sampler s, float2 texCoord)
{

float4 offsetCoord = texCoord.xyxy + texOffsets;
float2 fracCoord = frac(offsetCoord.xy * texWidthHeight);

float4 s00 = tex2D(s, offsetCoord.xy);
float4 s10 = tex2D(s, offsetCoord.zy);
float4 s01 = tex2D(s, offsetCoord.xw);
float4 s11 = tex2D(s, offsetCoord.zw);
s00 = lerp(s00, s10, fracCoord.x);
s01 = lerp(s01, s11, fracCoord.x);
s00 = lerp(s00, s01, fracCoord.y);
return s00;

}

10-bit Surfaces

•First-class citizen on all Radeon X1x00
•Supports blending, filtering and MSAA

•It is also displayable!
•Full screen only
•High fidelity visual outputs
•Benefits LCDs as well – high-quality dithering in
display engine

•Perfect for not-so-high HDR (MDR)
•Fixed point 2.8 format
•Could use gamma correction to boost the range
at small quality degradation

Multiple Render Targets

•X1x00 now supports separate color masks
for Multiple Render Targets

•Indicated by D3DPMISCCAPS_
INDEPENDENTWRITEMASKS cap bit

•Set with SetRenderState()
•D3DRS_COLORWRITEENABLE0
•D3DRS_COLORWRITEENABLE1
•D3DRS_COLORWRITEENABLE2
•D3DRS_COLORWRITEENABLE3

Pixel Shader

•New pixel shader architecture
•Advanced thread scheduler
•Full PS 3.0 support

•ALU based on proven R300 architecture
with improvements

•Simultaneous ALU, TEX and FC execution

3 x FP32

3 x FP32 1 x FP32

1 x FP32

TEX FC

PS 3.0 Capabilities

•Full PS 3.0 support in Radeon X1x00

X800-X850 X1x00
PS version 2.x 3.0
Static flow control No Yes

Dependent reads 4 No limit
Face and position No Yes
Arbitrary swizzles No Yes
Temps 32 32

Dynamic flow control No Yes
Instructions 512 512

Constants 32 224

Shader Optimization Tips

•Compiler does a pretty good job optimizing
shaders

•Don’t get hung up too much on hand-tuning

•Use swizzles and write masks to enable
automatic co-issue

•Explicitly vectorize calculations
•Especially important for 2D+2D case in post-
processing shaders

•Use literal constants in shaders

Instruction Balancing

•New and exciting trend – bigger ALU:TEX
ratio

•Easier to increase ALU power than memory
bandwidth

•History trends support this

•X1800, X1300 aim at least at 4:1 ratio
•Simultaneous 1 macro-ALU + 1 TEX execution

•X1600 aim at least at 8:1 or even 12:1 ratio
•Simultaneous 3 macro-ALU + 1 TEX execution

•Expensive filtering skews ratio towards ALU

Static Flow Control in Pixel Shaders

•Same as in VS
•Useful for shader management
•Need pre-caching for the best runtime
performance

•Why all this pre-caching anyway?
•The flow control instructions are relatively
inexpensive, but…

•They limit compiler's ability to re-schedule
instructions

•In extreme cases up to 50% performance loss

Dynamic Flow Control (DFC) in Pixel
Shaders

•One the most important features of PS 3.0
•Major architectural improvements in X1x00

•First class citizen
•Almost “free” flow control instructions
•Smallest execution thread granularity

•X1800: 16 pixels
•X1900: 48 pixels

Why is efficient DFC hard?

•GPU are massively parallel
•Smallest processing element is 2x2
•Actual threads have multiple quads
•All pixels in the thread follow all executed
paths

•Does it mean DFC is bad?
•No, just have to be careful

Using DFC in Pixel Shaders

•Ensure reasonable coherency of execution

•Use DFC for optimizations – skip
unnecessary computations and fetches

•if (dot(N, L)>0) …
•if (!bInShadow) …
•if (DistanceFromLight<Falloff) …
•Early out with alpha testing

•Avoid many small conditionals

•No loops and less than 6 nested levels of
branching goes into fast path mode

Predication in Pixel Shaders

•Predication – flow control technique in
vector processors

•Based on conditionals control vector
instruction execution per-channel

•No need to explicitly use it
•DirectX® spec is flexible, compiler can convert
predication <-> flow control statements

Screen Gradients

•Gradient computations use 2x2 quad
•With DFC pixels in the quad could go down different
paths resulting in ambiguous results

•Nothing that computes gradients can reside inside
flow control

•Fetches based on computed coordinates
•Gradients of computed values

•Interpolated texture coordinates are OK
•Otherwise use texldl, texldd and etc.

•Failure to comply will remove DFC from shader
code in HLSL or will fail in ASM

Optimal HLSL Use

•For VS use:
•D3DXSHADER_AVOID_FLOW_CONTROL
compiler flag

•/Gfa command line option

•For PS use:
•D3DXSHADER_PREFER_FLOW_CONTROL
compiler flag

•/Gfp command line option

Hyper-Z Technology

•Fast Z clear

•Z compression

•Hierarchical Z

•Early Z testing

Z Compression and Fast Clears

•Fast Z Clears
•Z and stencil buffer are contained in the same surface
•Clear Z and stencil together

•Compressed Z buffer
•Z buffer values are block-compressed to save Z
bandwidth

•Lossless compression
•Main Z buffer automatically compressed for performance
•Depth textures are not compressed (DF16, DF24)

Hierarchical Z

•Keeps the max or min Z value per block in on-chip memory

•Depth compare is performed per-block (tile)
• If incoming Z values are greater/smaller than block Z then the

triangle portion is hidden
• Else triangle is split into smaller blocks

•Allows fast Z culling of whole (or portions of) triangles
• Doesn’t work with PS depth output
• Can break if Z compare modes are reversed

•Render alpha-tested/texkill primitives after opaque ones
• This increases the chance of those being rejected by HiZ

culling

•Make Z near/far range as close to geometry as possible

Early Z Testing

•Ability to reject pixels before shading them

•Independent of Hierarchical-Z

•Early Z doesn’t work in two cases
•When shader outputs depth
•When alpha-test or texkill is used

•Sort front-to-back or consider depth-only
pass

HDR on Radeon X1000

What is HDR?

•High Dynamic Range

•Dynamic range is ratio of brightest to
darkest values

•HDR has dynamic range greater than 255:1
used in “normal” rendering

•Usually HDR requires greater than [0..1]
range

•Allows seeing details in both shadows and
bright areas

Radeon X1x00 Capabilities

•I10 formats
•Filtering
•Blending
•MSAA

•I16 formats
•Filtering

•FP16 (4-channel)
•Blending
•MSAA

•I16 complements FP16 in terms of functionality

Good Low-End Implementation
on Radeon X1300- X1600

•Perfect for MDR

•Use I10 for rendering with MSAA
•E.g. use 2.8 fixed point format
•Gamma correction can give bigger range

•Resolve to I10 buffer to be used for further
post-processing

•For intermediate post-processing steps
could use I10 or I16 (both are filterable)

•Use I10 or I8 for final display

Good High-End Implementation
on Radeon X1600- X1900

•Use FP16 for rendering with MSAA

•Use alternative HDR format
representations for textures

•Resolve and copy to I16 buffer to be used
for further post-processing

•For intermediate post-processing steps
could use I10 or I16 (both are filterable)

•Use I10 for final display

Is I16 Good Enough For Post-Processing
and Texturing?

•In majority of cases – YES!

•Represents 65535:1 dynamic range

•For limited ranges better precision than FP16 (16
vs. 10 bits)

•Many more bits than will be actually displayed
•Many bits to spare for post-processing

•There are some really cool solutions based on
integer formats

•E.g. expanded range support using integer formats

How Do You Do It?

•Many different methods Fixed scaling
•RGBS
•RGBE
•Compressed RGBE
•PPP
•RGBS+PPP
•EEE

•Examples use extreme range of values – up
to [0.004, 76800.0]

•That’s 19,200,000:1 dynamic range!
•Extreme exposure (night sky looks like daylight)

Fixed Scaling

•Use I16 with a simple scale
•E.g. fixed point 8.8 format

•Pros
•Range up to 0..255 with good precision (8.8)
•Works well for over-brightening
•In practice can tolerate a bit of range clamping
•Matches bilinear filtering of FP16
•The simplest and cheapest method for both
encoding and decoding

•Cons
•Fails for large ranges

•Encoding

•Decoding

// Convert to [0..1] range
color.rgb *= invMaxValue;

// Decode to full range
float3 tex = tex2D(Texture, texCoord).rgb;
tex.rgb *= maxValue;

Fixed Scaling Implementation

Fixed Scaling Example

RGBS Format

•Store common variable scale factor in the
alpha channel

•Floating point with linear range distribution

•Pros
•Cheap decoding (2 instr.)
•Better range than with a fixed scale
•Overall pretty good quality for reasonably large
ranges

•Cons
•Fails for extremely large ranges
•Fairly expensive encoding (up to 9 instr.)

RGBS Implementation

•Encoding

•Decoding

// Might need to clamp
color.rgb = min(color.rgb, maxValue);
// Find max value
float maxChannel = max(max(color.r,
color.g), color.b);
// Move scale to alpha
color.rgb /= maxChannel;
color.a = maxChannel * invMaxValue;

// Decode to full range
float4 tex = tex2D(Texture, texCoord);
tex.rgb *= tex.a * maxValue;

Improved RGBS

•Precision problem in darker parts
•Too few bits for scale of dark values
•This is because color uses max bits available

•Redistributing bits between color and scale
•Try to use similar number of bits for both
•Use adjustment factor

•Divide color by the adjustment
•Multiply scale by the adjustment

Af
f

BGR
⋅=

),,max(
A
1

Adjustment: f =

Improved RGBS Implementation

•Encoding
// Might need to clamp
color.rgb = min(color.rgb, maxValue);
// Find max value
float maxChannel = max(max(color.r,
color.g), color.b);
// Move scale to alpha
color.rgb /= maxChannel;
color.a = maxChannel * invMaxValue;
// Redistribute bits
color.a *= rsqrt(color.a);
color.rgb *= color.a;

RGBS Format Example

Wouldn’t It Break Filtering?

•Yes, it breaks bilinear filtering, but that’s not
really a problem

•Bilinear filter is far from perfect for reconstructing
signals

•Bilinear is used because it’s cheap and “good enough”
(makes images look smooth)

•There are better filters
•Just compare bilinear and bicubic…

Wouldn’t It Break Filtering?

•These methods don’t match bilinear filter
•… but they achieve the same goal

•Pros
•Make images look smooth
•When dealing with HDR non-linearity not
always a bad thing

•Cons
•Could produce slight haloing in cases of very
rapid value changes (rarely a huge problem)

•Might need some tweaking to make it look the
best

Filtering Comparison (RGBS)

Summary of HDR Formats

•Check out HDR Texturing whitepaper

•Pick method that works the best
•Quality vs. cost tradeoff

Method Encod.

instr.

Decod.

Instr.

Free

Alpha

Range Filter

quality

Overall

quality

+++ +

+

+++

++

+++

++

++

+

+++

++

+

Fixed scale 1 1 Yes Low

RGBS 5-9 2 No Med

RGBE 5-6 3 No High

PPP 5/8 2/8 Yes High

RGBS+PPP 10-14 3 No High

EEE 4 4 Yes High

Shadow mapping on Radeon
X1000

Shadow Mapping

• Shadow map: render depth from the light’s point of view

• Render the scene from the eye’s point of view
• Project the shadow map onto the scene using the light space

transform.
• Transform the current position into light space, and compare its

depth values with the depth values stored in the shadow map

Shadow Map Scene With Shadow Map

•A standard issue with shadow mapping is
aliasing

• Raising shadow map resolution is expensive

Aliasing

•Helps with aliasing problem

•Use multiple samples from the shadow map

•First compare then perform filtering

1-Tap Hard Shadowmapping 4x4 (16-tap) PCF

Percentage Closer Filtering (PCF)

PCF Optimization: Step 1

•Processing multiple taps in parallel
//Projected coords
projCoords = oTex1.xy / oTex1.w;

//Sample nearest 2x2 quad
shadowMapVals.r = tex2D(ShadowSampler, projCoords);
shadowMapVals.g = tex2D(ShadowSampler, projCoords +

texelOffsets[1].xy * g_vFullTexelOffset.xy);
shadowMapVals.b = tex2D(ShadowSampler, projCoords +

texelOffsets[2].xy * g_vFullTexelOffset.xy);
shadowMapVals.a = tex2D(ShadowSampler, projCoords +

texelOffsets[3].xy * g_vFullTexelOffset.xy);

//Evaluate shadowmap test on quad of shadow map texels
inLight = (dist < shadowMapVals);

//Percent in light
percentInLight = dot(inLight, float4(0.25, 0.25, 0.25, 0.25));

PCF Optimization: Step 2

•Take advantage of “Fetch-4”
// Sample nearest 2x2 quad
// (using 2x2 neighborhood fetch into .rgba)
shadowMapVals.rgba = tex2Dproj(ShadowSampler, projCoords);

//Evaluate shadowmap test on quad of shadow map texels
inLight = (dist < shadowMapVals);

//Percent in light
percentInLight = dot(inLight, float4(0.25, 0.25, 0.25, 0.25));

• In basic PCF has a limited number of intensity levels:
• 2x2 PCF = 4 intensity levels
• 4x4 PCF = 16 intensity levels
• 6x6 PCF = 36 intensity levels
• 8x8 PCF = 64 intensity levels

• Cheap alternative: area filter

4x4 (16-tap) PCF
4x4 (16-tap) Blended Edge

Tap PCF

Edge Tap Smoothing

Edge Tap Smoothing

• 3x3 area filter with 16 taps

• Can be optimized using fetch-4 (4 fetches)

• Fast alternative to bicubic, Gaussian, or other higher
order kernels

Sub-texel
offset in U

Sub-texel offset in V

• Grid based PCF kernel needs to be fairly large to
eliminate aliasing artifacts

• Need fewer samples with non-uniform sampling

4x4 (16-tap) PCF (12-tap) Randomized Offset PCF

Non-grid Based PCF Offsets

•Store tap offsets from center of the kernel as
constants

12-tap fixed disk PCF12-tap disk PCF 4x4 (16 tap) PCF

Non-Uniform Disc Sampling

Randomized PCF Offsets

•Changing random offsets per frame has
undesirable “TV noise” effect

•Precompute random values in screen
aligned texture:

•When scene is static, randomness in penumbra
is static

•Unique per pixel rotation of the disc kernel
works well

•Preserves distances in between taps in the
kernel

•Make sure no tap is directly in the center

• Use screen space location as random seed

• Look up in “random” rotation texture

Example 64x64 unique
rotation texture

red=cos(x)
green=sin(x)

12-tap fixed disk
PCF

12-tap per-pixel
uniquely rotated

disk PCF

Rotated Disk Kernel

Shadow Map Filtering Mask

•Need to use expensive filter only on the
shadow edges

•Use flow control in PS to skip expensive
computations

•Trivially compute full shadow and lighting

•Use shadow mask

N·L < 0 Shadow Edge Filter Union of all three masksGobo == 0

Only the white pixels
execute the expensive path

Shadow Mask Construction

•Combine several trivial rejections together

Edge Mask

•Penumbra regions only near depth discontinuities
(edges) on the shadow map

•Find edges based on depth

•Dilate edge map to at least the width of the
filtering kernel

Edge Mask Dilation

•Use bilinear filter for mask expansion

•Use lower mip level for mask testing
•PCF kernel size determines mip-level
•Test mask for non-zero values for detecting
penumbra regions

16x16 8x8 4x4 2x2 1x1

Scene Depth Complexity

Penumbra/ shadow
edge regions with

needed high quality PCF Fully occluded
regions receiving

unnecessary
high quality PCF

processing

Solid objects

Edge mask
projections onto

the scene

•Edge mask works well only for low depth
complexity

Penumbra/ shadow
edge regions

Solid objects

Projected edge
regions with
depth extent

Depth Extent Masking

•Compute min/max depths for the region

•Propagate min/max values during dilation

•Similar to hierarchical Z

//compute lighting for the point on the surface
lightVal = ComputeLighting(oTex1, dist, oTex2, oTex0);

//if there is no light hitting this surface, then return 0
if (dot(lightVal, float3(1, 1, 1)) == 0) {

return 0; //no lighting, return 0
}
else {

//fetch from depth extent texture
projCoords.zw = g_fEdgeMaskMipLevel;
edgeValMinMax = tex2Dlod(EdgeMipSampler, projCoords).rg;

if ((edgeValMinMax.r < dist) && (edgeValMinMax.g > dist)) {
//perform high quality PCF filtering here and return
//

}
else {

//perform single tap shadow mapping here and return
//

}
}

Depth Extent Masking Example

Too Little Bias: Surface Acne Too Much Bias: Floating Shadow

•Need to bias depth comparison

•Picking right bias value is hard
•Too little: surface acne
•Too much: disconnected shadows

Shadow Map Bias

Light Source

Scene Geometry

Depth of shadow map
texels projected onto
the scene.

Two Components of Bias

•Numeric: due to the shadow map precision

•Geometric: due to representing an area of texel projection
with a single depth value

•Bias depends on the shadow map resolution, slope of the
scene to the light source, and precision of depth map

Slope Based Bias

•Use Z bias for DF16 and DF24 formats

•Couls use gradients to compute bias in PS

•Large kernels could exhibit surface acne
and disconnects at the same time

•Standard biasing strategy breaks down…

ddistdx = ddx(dist);
ddistdy = ddy(dist);
dist += g_fSlopeBias * abs(ddistdx);
dist += g_fSlopeBias * abs(ddistdy);

Light Source

Shadow map compare value
computed for the current pixel.

Receiver GeometryShadow Map Texels

•For large PCF kernel, using a single depth
comparison value across the kernel is
insufficient

Receiver Plane Depth Bias

Light Source

Desired Shadow map compare value
taking into account receiver
depth variation across kernel.

Receiver GeometryShadow Map Texels

•Vary depth value across the kernel to match the
receiver plane

•Need to know how much the depth changes with
respect to shadow map texture coordinates

Receiver Plane Depth Bias

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂

y
d
x
dT

y
v

x
v

y
u

x
u

v
d
u
d

Texture space Jacobian
(inverse-transpose) Derivative of distance to

light source w.r.t.
screen coordinates

Derivative of distance
to light source w.r.t.
texture coordinates

Receiver Plane Depth Bias

•Compute texture space Jacobian:
•Derivative of texture coordinates with respect to screen
coordinates

•Use as a transform matrix to find derivative of
distance to light source w.r.t. texture coordinates

8x8 PCF without
adjustment

8x8 PCF with receiver
plane depth bias

Receiver Plane Depth Bias

//Packing derivatives of u,v, and distance to light source w.r.t. screen space x, and y
duvdist_dx = ddx(projCoords);
duvdist_dy = ddy(projCoords);

//Invert texture Jacobian and use chain rule to compute ddist/du and ddist/dv
// |ddist/du| = |du/dx du/dy|-T * |ddist/dx|
// |ddist/dv| |dv/dx dv/dy| |ddist/dy|

//Multiply ddist/dx and ddist/dy by inverse transpose of Jacobian
float invDet = 1 / ((duvdist_dx.x * duvdist_dy.y) - (duvdist_dx.y * duvdist_dy.x));

//Top row of 2x2
ddist_duv.x = duvdist_dy.y * duvdist_dx.w ; // invJtrans[1][1] * ddist_dx
ddist_duv.x -= duvdist_dx.y * duvdist_dy.w ; // invJtrans[1][2] * ddist_dy

//Bottom row of 2x2
ddist_duv.y = duvdist_dx.x * duvdist_dy.w ; // invJtrans[2][2] * ddist_dy
ddist_duv.y -= duvdist_dy.x * duvdist_dx.w ; // invJtrans[2][1] * ddist_dx
ddist_duv *= invDet;

//compute depth offset and PCF taps 4 at a time
for(int i=0; i<9; i++)
{

//offset of texel quad in texture coordinates;
texCoordOffset = (g_vFullTexelOffset * quadOffsets[i]);
//shadow map values
shadowMapVals = tex2D(ShadowSampler, projCoords.xy + texCoordOffset.xy);

//Apply receiver plane depth offset
dist = projCoords.w + (ddist_duv.x * texCoordOffset.x) + (ddist_duv.y * texCoordOffset.y);

inLight = (dist < shadowMapVals);
percentInLight += dot(inLight, invNumTaps);

}

Implementation

Conclusions

•Radeon X1000 tricks and optimizations

•HDR on Radeon X1000

•Shadow mapping on Radeon X1000

Questions

	Coding Tricks and Optimizations for�Radeon X1000 Series
	Outline
	Optimizations
	Vertex Processing
	Vertex Fetching
	Vertex Caching
	Geometry Optimization
	Vertex Shaders
	Static Flow Control in Vertex Shaders
	Dynamic Flow Control in Vertex Shaders
	Instancing
	Why Are Small Polys Bad?
	Vertex Textures
	Render to VB
	Render to VB
	New in Texturing
	Texture Cache
	ATI1N
	ATI1N
	Depth Textures (DST)
	Depth Textures (DST)
	Cool Stuff You Can Do With DST
	Fetch-4
	Fetch-4
	Cool Things You Can Do With Fetch-4
	Floating Point Surfaces
	FP16 Filtering
	FP16 Filtering Emulation Code
	10-bit Surfaces
	Multiple Render Targets
	Pixel Shader
	PS 3.0 Capabilities
	Shader Optimization Tips
	Instruction Balancing
	Static Flow Control in Pixel Shaders
	Dynamic Flow Control (DFC) in Pixel Shaders
	Why is efficient DFC hard?
	Using DFC in Pixel Shaders
	Predication in Pixel Shaders
	Screen Gradients
	Optimal HLSL Use
	Hyper-Z Technology
	Z Compression and Fast Clears
	Hierarchical Z
	Early Z Testing
	HDR on Radeon X1000
	What is HDR?
	Radeon X1x00 Capabilities
	Good Low-End Implementation�on Radeon X1300- X1600
	Good High-End Implementation�on Radeon X1600- X1900
	Is I16 Good Enough For Post-Processing and Texturing?
	How Do You Do It?
	Fixed Scaling
	Fixed Scaling Implementation
	Fixed Scaling Example
	RGBS Format
	RGBS Implementation
	Improved RGBS
	Improved RGBS Implementation
	RGBS Format Example
	Wouldn’t It Break Filtering?
	Wouldn’t It Break Filtering?
	Filtering Comparison (RGBS)
	Summary of HDR Formats
	Shadow mapping on Radeon X1000
	Shadow Mapping
	Aliasing
	Percentage Closer Filtering (PCF)
	PCF Optimization: Step 1
	PCF Optimization: Step 2
	Edge Tap Smoothing
	Edge Tap Smoothing
	Non-grid Based PCF Offsets
	Non-Uniform Disc Sampling
	Randomized PCF Offsets
	Rotated Disk Kernel
	Shadow Map Filtering Mask
	Shadow Mask Construction
	Edge Mask
	Edge Mask Dilation
	Scene Depth Complexity
	Depth Extent Masking
	Depth Extent Masking Example
	Shadow Map Bias
	Two Components of Bias
	Slope Based Bias
	Receiver Plane Depth Bias
	Receiver Plane Depth Bias
	Receiver Plane Depth Bias
	Receiver Plane Depth Bias
	Implementation
	Conclusions
	Questions

