
Preparing to DX10:
Advanced Rendering Effects

Guennadi Riguer

Outline

•DirectX 10 overview

•New pipeline and features

•Effect ideas and DirectX9 fallbacks

DirectX 10 Overview – Timeframe

•DirectX 10 requires Vista OS
•…and DX10-capable graphics card!

•DirectX 10 release alongside Vista
•Currently planned for Q1 2007

•Beta program available for Vista and DX10
•Register with Microsoft
(connect.microsoft.com)

•DX10 SDK publicly available
•With full REF implementation

DirectX 10 Design Goals

•Performance improvements
•Enhancements for both CPU and GPU

•Advanced forward-looking feature set
•No more fixed-function
•No other unpopular legacy features

•Common feature set for all HW
•No more caps!

Performance Improvements

•Major problem for ISV

•CPU bottleneck – “Small batch problem”
addressed:

•New driver model and thin runtime
•Better state management

•API features to help performance
•Instancing as “first class citizen”
•Resource management and data recirculation
•Render more in fewer draw calls

New Pipeline

• Orthogonalized FB

• Input assembler (IA)

• Geometry shader (GS)

• Stream out (SO)

• Output merger (OM)

Frame buffer

IA

RS

OM

PS

VS

GS

VB

IB

Tex

Const

Tex

Const

Tex

Const

Render Target

Depth/Stencil

Stream Out

Pixel Coordinates

•New pixel coordinates rules for D3D10!

•Pixel centers now offset by (0.5f, 0.5f)
•Similar to OpenGL rules

State Objects

•State Objects replace renderstates

•Can be stored in video memory for better
efficiency

•Five different state objects available:
•Input Layout Object
•Rasterizer Object
•DepthStencil Object
•Blend Object
•Sampler Object

Orthogonalized FB

• All resources are just memory arrays

• Multiple “views” provide attachment
points to different stages in the pipeline

• Allows recirculation of data

• Texture fetch in VS, GS and PS

Orthogonalized FB

•Can re-interpret some resource data

•Not fully general memory access
•Would hurt HW performance
•E.g. can’t render to constant buffer, etc.

Resource Types

•Two resource types:
•Buffer
•Texture

•Allows distinction required when filtering or
streaming out

•Texture resources made up of
subresources

•MIP level or array of MIP levels for arrays

Resources and Views

•All resources are memory arrays

•Allows reinterpretation of video memory
through “views”

•A resource view defines how a resource is
accessed

•Example 1: a specific MIP level can be selected
as a render target

•Example 2: 3D texture viewed as an array of
2D render target textures

Texture Arrays

•Up to 512 texture slices per array
•Up to 128 textures/arrays can be bound to a
pixel shader

•Allows sampling of a texture slice based on
a dynamic index

•Allows material lookup per ID

New Cool Things You Can Do

• More efficient multi-pass rendering
• E.g. animate once, render many times

• Displacement mapping

• Neat tricks with re-interpreting data

• GPGPU driven effects

Predicated Rendering

•Occlusion based rendering decision without
CPU intervention

•Render simple proxy geometry
•If not visible, rendering of more complex
geometry will be skipped

•Unavailable query results are treated as
“possibly visible” (conservative test)

•Predicated test should be sent well before the
subsequent draw

•DON’T use this as an alternative to view
frustum culling on the CPU

Constant Buffers

• Much bigger constant store
• 15 arrays of 4096 elements each

• Faster constant updates

• Ability to group consts into multiple
buffers for more efficient updates

• No more DX9 limits!

Constant Buffers

•Constant buffers declared within a
namespace

cbuffer MyConstantBlock
{

float4x4 matMVP;
float3 fLightPosition;

}

•Group constants into buffers according to
update frequency

•Constant buffers updated with resource
loading operations

•Map()/Unmap() or UpdateSubResource()

Geometry Instancing

•Allows multiple objects to be rendered in a
single call

•With varying material properties

•Use texture arrays to change textures on
instances

•Core feature of DirectX 10
ID3DDevice::IASetVertexBuffers()
ID3DDevice::DrawInstanced(…)
ID3DDevice::DrawIndexedInstanced(…)

System Generated Values

•InstanceID (VS)
•An integer ID for the object instance being
processed

•VertexID (VS)
•An integer ID for the vertex being processed
•Indexed primitives: VertexID contains index
number

•PrimitiveID (GS, or PS if GS not bound)
•An integer ID for the primitive being processed

Geometry Shader

Triangle with adjacency

•Operates on primitives

•Can change topology
•Generate new primitives
•Remove existing primitives

•Can have access to adjacency information

Stream Out

• Allows outputting VS or GS results
• Works with variable number of output

primitives
• DrawAuto() function for unknown number of

generated primitives

• All topologies are converted to lists on
output
• Might want to use points instead of triangles

for intermediate passes

• Alternative to render to texture/VB

New Cool Things You Can Do

• Compute per-primitive entities
• E.g. face normals

• Shadow volume extrusion

• Particles and particle systems

• Not really designed for high-performance
tessellation, but…

Shader Model 4.0 (SM 4)

•Unified shader core for VS, GS and PS

•Only HLSL supported (no coding in
assembly, but can view asm for debugging)

Memory Resources
Input Data

Output Data

Shader Core

Constant
Buffers

Textures

Buffers

Samplers

Shader Mode 4.0

•Load-time or offline compilation supported

•No partial precision, IEEE FP32 only

•Full (x,y,z,w) screen space coordinates can be
input to pixel shader

•Textures and samplers are now independent

•Render target index supported

•16 VS inputs

•16 PS inputs (32 with GS)

SM4 HLSL Resource Access

•Texture functions now templated
<T>.GetDimensions(…) <T>.Sample(…)
<T>.SampleCmp(…) <T>.SampleCmpLevelZero(…)
<T>.SampleGrad(…) <T>.SampleLevel(…)

•New function to load data from resources
<T>.Load(…)

•Template types:
Buffer
Texture1D Texture1DArray
Texture2D Texture2DArray
Texture2DMS Texture2DMSArray
Texture3D

SM4 HLSL Flow Control Management

•Dynamic Flow Control available at all
shader stages

•Improved flow control management
through attributes

[branch] [flatten] [unroll(x)] [loop]

•Examples:
[branch] if (dot(N, L)>0) {…}
[unroll(8)] while (1) { … }

•Flow control restrictions still apply!

Shader Mode 4.0 Limitations

•Practically “unlimited”

SM 3.0 SM 4.0

Instructions 512 unlimited

FC nesting limit 4/24 32/64

Constants 224 16x4096

Samplers 16 16

Textures 16 128

Temporaries 32 4096

Indexable temporaries 0 4096

Interpolators 10 16/32

MRT outputs 4 8

Integer Shader Operations

•Supports int, uint types

•Integer and bitwise operations
•+, -, *, /, min, max
•not, and, or, xor, <<, >>

•Type casting and reinterpretation
uint uMyInt= (uint)fMyFloat;
uint uMyInt = asfloat(fMyFloat);

New Cool Things You Can Do

•Predictable and well defined data access in
any shader type

•Can solve problem in the best shader stage

•Complex materials
•RenderMan movie complexity shaders on GPU

•Integer tricks
•Custom data packing and compression

Simulating DX10 with DX9

• Can’t really simulate API

• Only some of the features can be used

• Useful to try high-level concepts

• Useful for “guesstimating” DX10
performance

• Faster than RefRast

Simulating DX10 with DX9

• Idea: re-circulate data
• Use multi-pass approach

• Can somewhat simulate GS + SO
• Can’t generate variable number of primitives

• Features available in DX9
• Vertex texture fetch (Nvidia)
• Render to VB (ATI)

Multi-pass with VTF

RS

Raster
Backend

PS

VS

VBIB

Tex

Tex

Render Target

Depth/Stencil

Render to VB

VB

RS

Raster
Backend

PS

VS

VBIB

Tex

Render Target

Depth/Stencil

Render to VB in DX10

Frame buffer

IA

RS

OM

PS

VS

GS

VB

IB

Tex

Const

Tex

Const

Tex

Const

Render Target

Depth/Stencil

Stream Out

•Multiple ways to produce
output

•Stream out
•Render targets

•Ideal rendering method in
DX10 – combination of GS,
stream out and render to
VB

•Need to experiment

Experimental Techniques

•Animation

•Shadow volume extrusion

•Tessellation

•Displacement mapping

•Sort on GPU

•Uber-shaders

•GPGPU

Animation

•Problems in DX9
•Limited number of bones

•Even worse when trying to use instancing

•Constant uploads are expensive
•Animation code in VS is executed on every
pass

Animation

•Solution in DX10
•Constant buffers provide large storage
•Constant buffer updates should be cheaper

•Could preload all animation data – no transfer

•Stream out animated data for multi-pass

•Other possible improvements
•Move animation blending to GPU

•Used by other techniques

Constant Buffers

• Fake with textures in DX9 for simulation
• Was used with render to VB animation

• DX9 VS constant update ~400 Mb/s

• DX9 dynamic texture update ~2.5 Gb/s
• Updates batched into a large texture to reduce

overhead of texture locking

Streamed Out Animation in DX10

• Pass 1
• Draw list of points (verts) for animation and

stream out

• Pass 2
• Reinterpret animated verts with proper index

information for final rendering

Streamed Out Animation in DX9

• Fake stream out with render to VB

Animation sets

RS

PS VS

VBIB

PS

Matrix palette

Vertex data

Animated
model data

Position
Normal

. . .

Render to VB
Animation Performance

•Matrix palette generation
•~60-80 instructions per matrix
•Overall negligible performance impact

•Animation in PS
•~80-100 instructions/vertex max depending on
shader complexity

•Mostly texture fetch bound for the bone
matrices

•90-275 Mvert/s (depends on number of bones)

Solving Batching Problem

• Also solves batching problems

• Can batch transformations from multiple
objects

• Simulate DX10 texture arrays using
texture atlases

• Demo renders up to 4096 objects in one
draw call

Animation Example

Shadow Volume Extrusion

•Problems in DX9
•Doesn’t work correctly with animated objects
•Games are forced to perform animation and
extrusion on CPU

•Solution in DX10
•Perform animation on GPU, stream it out
•Perform extrusion in GS, generate sides of
shadow volume

Shadow Volume Extrusion in DX10

• Compute face normal in GS

• Leave polygons facing the light in place
(front cap)

• Move back-facing polygons away from
light (back cap)

• Create side quads to stitch front and back
caps

Shadow Volume Extrusion in DX10

Light direction

Front cap

Back cap

Side filling quads

Shadow Volume Extrusion in DX9

•Can’t generate unknown number of
polygons with render to VB

•Solution: use degenerate quads for all
edges

•Some already use in DX9 for static objects

•Use separate pass to re-compute face
normals after animation for the extrusion

Shadow Volume Extrusion in DX9

VB

PS

. . .

VS

VBIB

Matrix palette

Vertex data

Animated
model data

Position
Normal

. . .

PS

Face indices for
each polygon

Face normal
(stored for

each vertex)

. . .

VS

VBIB

Animation pass

Face normal pass

Extrusion pass

Shadow Volume Extrusion
Performance

•Assumptions for extrusion in DX10 (with GS)
•Animation – 60 instr/vertex
•Average extrusion in GS – 40-50 instr/tri

•Assumptions for extrusion in DX9
•Animation – 60 instr/vertex
•Face normal calculation – 20 instr/vertex
•Extrusion in VS – 10 instr/vertex

•Estimates: DX9 is ~20% slower than GS
•For 1K model with moderate vertex reuse
•Extra memory bandwidth isn’t taken into account

Tessellation

• Could use render to VB to generate fixed
number of vertices/polygons

• Can simulate fixed level tessellation

• GS isn’t really designed for tessellation,
but might be worth trying anyway

N-patches with Render to VB

• Back to the future ☺

N-patches

•Cubic interpolation for the position
•Uses triangular Bezier patch

•Quadratic interpolation for the normal
•Different control mesh from position

•Linear interpolation for texture coordinates

N-patches

Original geometry

Triangular Bezier patch

Normal control points

DX9 Implementation Details

•Render quad with as many pixels as final
number of vertices

•For each rendered pixel:
•Fetch 3 original control points
•Get barycentric coordinate of this vertex
•Compute new position, normal and tex coord

•Use pre-computed barycentric coordinates
to compute new positions, normals, etc.

•Store in (N x 1) texture, N – verts per patch

•Finally render new mesh

N-patch Performance

•DX9 performance
•All control points are re-computed for every
vertex – a bit wasteful

•Tessellation shader – 112 SM 3.0 instructions
•Tessellation rate – 60-80 Mverts/sec

•DX10 improvements
•GS removes redundant control point
computations, but other bottlenecks could
show up

Displacement Mapping

• Displace vertices with VTF

• Could use with or without tessellation

• Usage examples
• Geometry compression technique
• Procedural or dynamic displacement
• Creation of unique objects
• Intersection / collision detection

Geometry Compression

• Can create huge landscapes
• Use really small footprint formats

• E.g. can store heightmap of California in
222Mb with 30 x 30 m resolution using
BC4_UNORM format
• 24:1 compression ratio

Dynamic Displacement

• Compute displacement/heightmap

• Re-compute normals in texture space
• Use Sobel filter (could be done with 4 bilinear

fetches)

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

Filter for dX Filter for dY

Dynamic Displacement

Snow Example

•“Physically correct” snow accumulation

•Making imprints in texture space
•Render parts of objects intersecting snow
•Blur imprints to create more natural slope
•Combine new imprints with previous layer of
snow

•Varying depth of imprints based on snow
depth

Automatic Object Placement

•Automatically put objects (trees, grass,
etc.) on the terrain

•Use displacement map to find vertical
displacement

•Works with procedurally generated
landscapes

•Works perfectly for objects where CPU
doesn’t need to know real position

•Just keep that data on GPU

Creating Unique Objects

• Make all your objects look different using
the same mesh

• Displace basic mesh using collection of
displacement maps
• E.g. no 2 trees in the forest are the same

Sorting on GPU

• Order independent transparency is a huge
problem

• Could sort alpha blended particles (or
other polygons, objects, etc.) on GPU

• Works perfectly with particle systems
implemented on GPU

Bitonic Sort

• Very hardware friendly and has excellent
parallelism
• Can be implemented without recursion

• Performance: Θ(n (log2 n)2)
• 16K particles at over 40 fps on X1900

• 2D texture used to store and sort more than 4096
particles

Bitonic Sort Example

3 1 7 2 4 9 8 5

3 1 7 2 4 9 8 51 3

1 3 7 2 4 9 8 52 3 8 47 9 53 8 4

1 2 7 9 53 8 44 75 97 88 9

2D Bitonic Sort

•Combination of vertical and horizontal sort
passes

Last 4 sort passes

Implementation Tricks – Part 1

•Use 2 textures due to number of data
components

•Position, distance, particle ID

•Compare-and-exchange operation
•Twice the workload
•Example:

•Compare A and B, smaller goes into A
•… then B and A, greater goes into B

Implementation Tricks – Part 2

• Use texture coordinate “magic” to select
direction of pixel offset

• Use square wave with +1 and -1 values to
drive direction of the offset and sign of
comparison

Bitonic Sort Shader (VS)

struct VsOut {
float4 pos: POSITION;
float4 texCoord: TEXCOORD0;
float3 dir: TEXCOORD1;

};

float2 halfPixel, select;
float step0, step1, step2;

VsOut main(float4 pos: POSITION)
{

VsOut Out;
Out.pos = pos;
Out.texCoord.xy = pos.xy * float2(0.5,-0.5) + 0.5 + halfPixel;
Out.texCoord.zw = 0;
// Select sample direction
float r = dot(Out.texCoord, select);
// Sample direction and frequencies
Out.dir = float3(r*step0, r*step1, Out.texCoord.y*step2);
return Out;

}

Bitonic Sort Shader (PS)

struct PsOut {
float4 pos: COLOR0; // particle position
float4 dist: COLOR1; // distance used for sorting

};

sampler2D Tex;
sampler2D Dist;

// Distance between pixels to compare.
float4 offset;

PsOut main(float4 texCoord: TEXCOORD0, float3 direction: TEXCOORD1){
PsOut Out;
// Sample current value
float4 d0 = tex2D(Dist, texCoord.xy);
// dir.x = Sample and comparison direction.
// dir.y = Horizontal comparison frequency.
// dir.z = Vertical comparison frequency.
float3 dir = (frac(direction) < 0.5)? 1 : -1;
// Select other value to compare to
float4 texCoord1 = texCoord + dir.x * offset;
float4 d1 = tex2D(Dist, texCoord1.xy);

. . .

Bitonic Sort Shader (PS)

. . .
// Compute comparison direction and make actual comparison
dir.x *= dir.y;
dir.x *= dir.z;
dir.x *= (d1.x - d0.x);

// The sign indicates which value we want
if (dir.x <= 0){

Out.pos = tex2D(Tex, texCoord);
Out.dist = d0;

} else {
Out.pos = tex2Dlod(Tex, texCoord1);
Out.dist = d1;

}
return Out;

}

Mixing Materials

•Often alpha blended particles have
different textures or even materials

•In DX10 use texture arrays and uber-
shaders to render all in one pass

•Flow control in uber-shader will have good
coherency

•GS can even generate different geometry
for different types of particles

Uber-shader Example

• Grass – static particles with different
textures

• Fires – vertically rotating billboards with
procedural fire (generated in PS)

• Smoke – camera oriented particles

Sorting Demo

GPGPU

• Physics on GPU allows keeping data on
the card all the time
• No extra data transfers
• Free up CPU for more important tasks

• The best solution for GPU generated
particle systems, etc.
• E.g. smoke interaction with the ground

Conclusions

•DirectX 10 overview

•New pipeline and features

•Effect ideas and DirectX9 fallbacks

Questions

	Preparing to DX10:�Advanced Rendering Effects
	Outline
	DirectX 10 Overview – Timeframe
	DirectX 10 Design Goals
	Performance Improvements
	New Pipeline
	Pixel Coordinates
	State Objects
	Orthogonalized FB
	Orthogonalized FB
	Resource Types
	Resources and Views
	Texture Arrays
	New Cool Things You Can Do
	Predicated Rendering
	Constant Buffers
	Constant Buffers
	Geometry Instancing
	System Generated Values
	Geometry Shader
	Stream Out
	New Cool Things You Can Do
	Shader Model 4.0 (SM 4)
	Shader Mode 4.0
	SM4 HLSL Resource Access
	SM4 HLSL Flow Control Management
	Shader Mode 4.0 Limitations
	Integer Shader Operations
	New Cool Things You Can Do
	Simulating DX10 with DX9
	Simulating DX10 with DX9
	Multi-pass with VTF
	Render to VB
	Render to VB in DX10
	Experimental Techniques
	Animation
	Animation
	Constant Buffers
	Streamed Out Animation in DX10
	Streamed Out Animation in DX9
	Render to VB�Animation Performance
	Solving Batching Problem
	Animation Example
	Shadow Volume Extrusion
	Shadow Volume Extrusion in DX10
	Shadow Volume Extrusion in DX10
	Shadow Volume Extrusion in DX9
	Shadow Volume Extrusion in DX9
	Shadow Volume Extrusion Performance
	Tessellation
	N-patches with Render to VB
	N-patches
	N-patches
	DX9 Implementation Details
	N-patch Performance
	Displacement Mapping
	Geometry Compression
	Dynamic Displacement
	Dynamic Displacement
	Snow Example
	Automatic Object Placement
	Creating Unique Objects
	Sorting on GPU
	Bitonic Sort
	Bitonic Sort Example
	2D Bitonic Sort
	Implementation Tricks – Part 1
	Implementation Tricks – Part 2
	Bitonic Sort Shader (VS)
	Bitonic Sort Shader (PS)
	Bitonic Sort Shader (PS)
	Mixing Materials
	Uber-shader Example
	Sorting Demo
	GPGPU
	Conclusions
	Questions

