
1

Optimizing Games for
IMAGEON™ 3D – Enabled
Handsets

Claude Benoit
Technical Evangelist

August 31, 2006

2

OVERVIEW

• IMAGEON™ 3D Feature Set

• Optimizing 3D Games for Performance

IMAGEON™ 3D Feature Set

4

IMAGEON™ 3D Feature Set

W230x MSM75xx W238x

OpenGL ES 1.0 OpenGL ES 1.0 +
Extensions

OpenGL ES 1.1 +
Extension Pack
+ Extensions

Stencil - 4 bits/pixel 8 bits/pixel

4 M triangles / sec

125 M pixels/sec

QVGA / VGA
Double-Buffered

Portrait &
Landscape

16 bits/pixel

16 bits/pixel

-

Performance

Triangle Rate (specs) 1 M triangles/sec 4 M triangles/sec

3D Pixel Fill Rate (specs) 100 M pixels/sec 125 M pixels/sec

LCD Orientation Portrait &
Landscape

Portrait &
Landscape

Color 16 bits/pixel 16 bits/pixel

Frame Buffer

Supported Resolutions QVGA
Double-Buffered

VGA
Double-Buffered

Z buffer 16 bits/pixel 16 bits/pixel

FBO: Frame Buffer Objects - Yes (1)

(1) Support for color, Z, stencil; all sub-formats according to OES_framebuffer_object

5

IMAGEON™ 3D Feature List

W230x MSM75xx W238x

Geometry Engine

DX8-style Vertex Shaders - - Yes

Hardware Point Sprites - Yes Yes

Distance-based size factor - - Yes

Number of matrices/vertex - 4 4

Total number of matrices - 32 32

Yes

Yes

Yes

-

-

-

-

Hardware Transforms Yes Yes

Vertex Buffer Objects Yes Yes

Hardware Lighting - Yes

Spotlight - Yes

Vertex Skinning - Yes

Directional - Yes

Point - Yes

6

IMAGEON™ 3D Feature List

W230x MSM75xx W238x

Texturing

Texture Compression (1) - Yes Yes

DOT3 Bump Mapping - Yes Yes

Projective Textures - - Yes

Early Z Culling - - Yes

Cubic Mapping - - Yes

2

Yes

Yes

Texture pipelines 1 2

Texture Crossbar - Yes

Extended Texture Data Formats (2) - Yes

(1) ATI_TC for both RGB and RGBA
(2) Extended Texture Coordinate Data Formats: 4.4 / 8.8 / 4.12

7

W238x – Architecture Overview

Memory
Buffer

Video
Acceleration

Video/Image
Capture

Graphics Engine

SRAM

Host CPU I/F

Power
Management

Command
Processor

S
ta

cked
 D

R
A
M

Media DSP
(Audio/Video)C

ac
h
e

Audio
Capture/Output

PLLClock
Source

H
o
st

 C
P
U

 &

B
as

eb
a
n
d

S
u
b
-s

ys
te

m

System
Memory

Memory
Controller

W238x

2D

3D

Primary Display
Engine

2nd Display
Engine

Imaging

SD/MMC

OpenGL ES 1.1 + Extension Pack compliant

8

MSM7xxx -- Architecture Overview

SYSTEM
MEMORY 1

(Available on
some chips)

SYSTEM
MEMORY 1

(Available on
some chips)

ARM 9 CPUARM 9 CPU

Q3DHWQ3DHW

COLOR
Z, and

STENCIL
BUFFERS

COLOR
Z, and

STENCIL
BUFFERS

LCDLCD

MODEMMODEM

ARM 11
MM CPU
ARM 11
MM CPU

Included in MSM

QDSP-5QDSP-5
MOBILE
DISPLAY

PROCESSOR

MOBILE
DISPLAY

PROCESSOR

SYSTEM
MEMORY 2
(Optional)

SYSTEM
MEMORY 2
(Optional)

A
H

B
 B

U
SE

S

ARM 11 CPU
Game Control

ARM 11 CPU
Game Control

Q3DHW Geometry
Rasterization

Q3DHW Geometry
Rasterization

LCDLCD

Mobile Display Processor
2D Image Operations

Mobile Display Processor
2D Image Operations

Local Memory
Color, Z, Stencil Buffer

Local Memory
Color, Z, Stencil Buffer

Optimizing 3D Games
for Performance

10

Battle Plan for Better Performance

• Locate the bottleneck(s)

• Eliminate the bottleneck (if possible)
• Decrease workload of bottlenecked stage

• Otherwise, balance the pipeline
• Increase workload of non-bottlenecked stage

11

Finding the Bottleneck

• Reduce the workload of different stages

• If performance does not change
• Move on, this is not it

• If performance does change significantly
• This is the bottleneck
• Look to reduce workload

• Repeat

• TRICK: try finding the bottleneck that will give you the best ROI

12

Possible Pipeline Bottlenecks

CPU Geometry
Storage

Geometry
Processor Rasterizer Fragment

Processor
Frame
buffer

Texture
Storage +

Filter

CPU/Bus
Bound

Pixel
Bound

Vertex
Bound

13

Pixel Bottleneck

• Easiest to detect
• Does performance scale with resolution?

• Multiple causes
• Memory bandwidth

• Disable blending
• Reduce texture bit depth/size

• Texture filtering
• Turn off trilinear

• Texture combine
• Disable texture units

14

Vertex Bottleneck

• Harder to detect..

• Render ½ the triangles of each object

• Reduce the complexity of the vertex processing
• Disable lights
• Disable skinning

• If both scale performance
• Vertex bottleneck

• If only reduced triangle count scales
• Submission/fetch bottleneck

15

CPU Bottleneck

• Use profiler (if available)

• Find driver versus application time

• Turn off processing that does not affect rendering

16

Geometry Transfer Bottlenecks

CPU Geometry
Storage

Geometry
Processor Rasterizer Fragment

Processor
Frame
buffer

Texture
Storage +

Filter

CPU/Bus
Bound

Pixel
Bound

Vertex
Bound

17

Geometry Transfer Bottlenecks

• Vertex data problems
• Data size issues
• Non-native types

• Using the wrong API calls
• Not using vertex buffer objects or mesh lists
• Non-indexed primitives

• Poor batching
• Limit number of draw calls
• Sort by material

• Too much dynamic vertex data

18

Geometry Transform Bottlenecks

CPU Geometry
Storage

Geometry
Processor Rasterizer Fragment

Processor
Frame
buffer

Texture
Storage +

Filter

CPU/Bus
Bound

Pixel
Bound

Vertex
Bound

19

Geometry Transform Bottlenecks

• Too many vertices
• Use LOD models
• Use bump maps to fake geometric details

• Too much vertex computation
• Pre-compute lighting or reduce number of lights

• If you have to use lights, try to use directional diffuse

• Avoid texture matrix
• If using BYTE or SHORT texcoords, make sure texture matrix cost isn’t

offsetting the gain

• Unnecessary use of GL normalize
• Pre-compute normalized normals

• Use fog sparingly

20

Geometry Transform Bottlenecks

• Calculations per-vertex that could be per-object

• Vertex cache efficiency (where exists)
• Know your platform

• Is there a vertex cache?
• Are degenerate triangles preferred?

• Re-order vertices to be sequential in use
• Use degenerate triangles if appropriate

21

Rasterization Bottlenecks

CPU Geometry
Storage

Geometry
Processor Rasterizer Fragment

Processor
Frame
buffer

Texture
Storage +

Filter

CPU/Bus
Bound

Pixel
Bound

Vertex
Bound

22

Rasterization Bottlenecks

• Interpolating unnecessary vertex attribute

• Poor depth culling efficiency
• Always clear depth
• Coarsely sort objects back to front
• Constrain near and far planes to geometry visible
• Avoid polygon offset
• Again, know your platform!

• Different advice for different GPUs…

23

Texture Bottlenecks

CPU Geometry
Storage

Geometry
Processor Rasterizer Fragment

Processor
Frame
buffer

Texture
Storage +

Filter

CPU/Bus
Bound

Pixel
Bound

Vertex
Bound

24

Texture Bottlenecks

• Texture resolutions should only be as big as needed

• Compress textures:
• Use ATI_TC texture compression
• Palette textures are expanded in the driver.

• Poor texture cache utilization
• Always use mip mapping
• But not necessarily trilinear!
• Best bang for the buck: LINEAR_MIPMAP_NEAREST

25

Fragment Bottlenecks

CPU Geometry
Storage

Geometry
Processor Rasterizer Fragment

Processor
Frame
buffer

Texture
Storage +

Filter

CPU/Bus
Bound

Pixel
Bound

Vertex
Bound

26

Fragment Bottlenecks

• Follow advice for maximizing depth culling efficiency

• Avoid unnecessary texture combine operations
• Example: combine pass that does (Basemap * Constant)
• Do this as a preprocess

• Unlikely bottleneck on fixed-function devices
• But highly common with shaders…

27

Framebuffer Bottlenecks

CPU Geometry
Storage

Geometry
Processor Rasterizer Fragment

Processor
Frame
buffer

Texture
Storage +

Filter

CPU/Bus
Bound

Pixel
Bound

Vertex
Bound

28

Framebuffer Bottlenecks

• Turn off Z writes for transparent objects and multipass
• glDepthMask

• Only do alpha blending if you have to
• Use multi-texture to replace multi-passing if possible
• Don’t assume glBlendFunc(GL_ONE, GL_ZERO) is free

• Use appropriate bit depths
• For render-to-texture, use 16-bit color/z if possible

29

General Hardware Performance Tips

• Fixed-function lighting
• Per-vertex
• Per-pixel

• Render-to-texture

• Geometry storage

30

Fixed-Function Per-Vertex Lighting Tips

• Directional lights are faster than point lights
• Determined by w-component of light position

• Specular computation adds additional overhead
• Disable with specular material of (0, 0, 0, 0)

• Careful with lighting and skinning
• Effectively reduces matrix palette size by half
• Driver needs to transform normal using inverse modelview matrix

• Pre-compute lighting if not dynamic

• ….use per-pixel lighting instead!

31

Fixed-Function Per-Pixel Lighting Tips

• Lightmaps for static lighting

• DOT3 bump-mapping for dynamic per-pixel diffuse lighting
• Use directional light & world-space normals for static geometry
• Use cubemap normalizer for tangent-space surfaces
• Reduces dynamic vertex data by allowing effective lighting with less

geometry
• Goal: avoid dynamic vertex data!

• Projective textures for spotlight effect

• Specular cube map to fake per-pixel specular

• Gloss map to attenuate per-pixel specular

32

Render-to-Texture Tips

• Don’t use glCopyTexImage2D!

• Use OES_framebuffer_object for best performance

• Use glGenerateMipMapOES for explicit fast mipmap generation

• Share depth buffer among same-sized offscreen surfaces

• Use 2D offscreen texture for dynamic planar reflections
• Texture matrix to compute projective texture coordinates

• Use cubemap for general dynamic reflections
• Consider using proxy geometry for speed

33

Geometry Storage Tips

• Use GL_SHORT of GL_BYTE for position
• Use modelview matrix to scale to desired range

• ATI tip: use ATI_extended_texture_coordinate_data_formats
• Byte 4.4, Short 4.12, Short 8.8
• Advantage: does not require texture matrix scaling!
• Use GL_SHORT or GL_BYTE on other hardware

• Use GL_SHORT for normals

• For skinning: sort primitives by bone indices

• Use strips and degenerate triangles

• ATI tip: use ATI mesh lists for optimal performance!

34

Conclusions

• Locate performance bottlenecks
• Use best-practices to optimize each stage
• Use hardware features to offload from CPU -> GPU

35

QUESTION PERIODQUESTION PERIOD

	OVERVIEW
	IMAGEON™ 3D Feature Set
	IMAGEON™ 3D Feature Set
	IMAGEON™ 3D Feature List
	IMAGEON™ 3D Feature List
	W238x – Architecture Overview
	MSM7xxx -- Architecture Overview
	Optimizing 3D Games�for Performance�
	Battle Plan for Better Performance
	Finding the Bottleneck
	Possible Pipeline Bottlenecks
	Pixel Bottleneck
	Vertex Bottleneck
	CPU Bottleneck
	Geometry Transfer Bottlenecks
	Geometry Transfer Bottlenecks
	Geometry Transform Bottlenecks
	Geometry Transform Bottlenecks
	Geometry Transform Bottlenecks
	Rasterization Bottlenecks
	Rasterization Bottlenecks
	Texture Bottlenecks
	Texture Bottlenecks
	Fragment Bottlenecks
	Fragment Bottlenecks
	Framebuffer Bottlenecks
	Framebuffer Bottlenecks
	General Hardware Performance Tips
	Fixed-Function Per-Vertex Lighting Tips
	Fixed-Function Per-Pixel Lighting Tips
	Render-to-Texture Tips
	Geometry Storage Tips
	Conclusions

