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OVERVIEW

• IMAGEON™ 3D Feature Set

• Optimizing 3D Games for Performance
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IMAGEON™ 3D Feature Set

W230x MSM75xx W238x

OpenGL ES 1.0 OpenGL ES 1.0 + 
Extensions

OpenGL ES 1.1 + 
Extension Pack
+ Extensions

Stencil - 4 bits/pixel 8 bits/pixel

4 M triangles / sec

125 M pixels/sec

QVGA / VGA
Double-Buffered

Portrait & 
Landscape

16 bits/pixel

16 bits/pixel

-

Performance

Triangle Rate (specs) 1 M triangles/sec 4 M triangles/sec

3D Pixel Fill Rate (specs) 100 M pixels/sec 125 M pixels/sec

LCD Orientation Portrait & 
Landscape

Portrait & 
Landscape

Color 16 bits/pixel 16 bits/pixel

Frame Buffer

Supported Resolutions QVGA
Double-Buffered

VGA
Double-Buffered

Z buffer 16 bits/pixel 16 bits/pixel

FBO: Frame Buffer Objects - Yes (1)

(1) Support for color, Z, stencil; all sub-formats according to OES_framebuffer_object
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IMAGEON™ 3D Feature List

W230x MSM75xx W238x

Geometry Engine

DX8-style Vertex Shaders - - Yes

Hardware Point Sprites - Yes Yes

Distance-based size factor - - Yes

Number of matrices/vertex - 4 4

Total number of matrices - 32 32

Yes

Yes

Yes

-

-

-

-

Hardware Transforms Yes Yes

Vertex Buffer Objects Yes Yes

Hardware Lighting - Yes

Spotlight - Yes

Vertex Skinning - Yes

Directional - Yes

Point - Yes
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IMAGEON™ 3D Feature List

W230x MSM75xx W238x

Texturing

Texture Compression (1) - Yes Yes

DOT3 Bump Mapping - Yes Yes

Projective Textures - - Yes

Early Z Culling - - Yes

Cubic Mapping - - Yes

2

Yes

Yes

Texture pipelines 1 2

Texture Crossbar - Yes

Extended Texture Data Formats (2) - Yes

(1) ATI_TC for both RGB and RGBA
(2) Extended Texture Coordinate Data Formats: 4.4  / 8.8 / 4.12
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W238x – Architecture Overview
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MSM7xxx -- Architecture Overview

SYSTEM
MEMORY 1

(Available on 
some chips)

SYSTEM
MEMORY 1

(Available on 
some chips)

ARM 9 CPUARM 9 CPU

Q3DHWQ3DHW

COLOR 
Z, and 
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COLOR 
Z, and 
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SYSTEM
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SYSTEM
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Battle Plan for Better Performance

• Locate the bottleneck(s)

• Eliminate the bottleneck (if possible)
• Decrease workload of bottlenecked stage

• Otherwise, balance the pipeline
• Increase workload of non-bottlenecked stage
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Finding the Bottleneck

• Reduce the workload of different stages

• If performance does not change
• Move on, this is not it

• If performance does change significantly
• This is the bottleneck
• Look to reduce workload

• Repeat

• TRICK: try finding the bottleneck that will give you the best ROI
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Possible Pipeline Bottlenecks
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Pixel Bottleneck

• Easiest to detect
• Does performance scale with resolution?

• Multiple causes
• Memory bandwidth

• Disable blending
• Reduce texture bit depth/size

• Texture filtering
• Turn off trilinear 

• Texture combine
• Disable texture units
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Vertex Bottleneck

• Harder to detect..

• Render ½ the triangles of each object

• Reduce the complexity of the vertex processing
• Disable lights
• Disable skinning

• If both scale performance
• Vertex bottleneck

• If only reduced triangle count scales
• Submission/fetch bottleneck



15

CPU Bottleneck

• Use profiler (if available)

• Find driver versus application time

• Turn off processing that does not affect rendering



16

Geometry Transfer Bottlenecks
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Geometry Transfer Bottlenecks

• Vertex data problems
• Data size issues
• Non-native types

• Using the wrong API calls
• Not using vertex buffer objects or mesh lists
• Non-indexed primitives

• Poor batching
• Limit number of draw calls
• Sort by material

• Too much dynamic vertex data
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Geometry Transform Bottlenecks
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Geometry Transform Bottlenecks

• Too many vertices
• Use LOD models
• Use bump maps to fake geometric details

• Too much vertex computation
• Pre-compute lighting or reduce number of lights

• If you have to use lights, try to use directional diffuse

• Avoid texture matrix
• If using BYTE or SHORT texcoords, make sure texture matrix cost isn’t 

offsetting the gain

• Unnecessary use of GL normalize
• Pre-compute normalized normals

• Use fog sparingly
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Geometry Transform Bottlenecks

• Calculations per-vertex that could be per-object

• Vertex cache efficiency (where exists)
• Know your platform

• Is there a vertex cache?
• Are degenerate triangles preferred?

• Re-order vertices to be sequential in use
• Use degenerate triangles if appropriate
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Rasterization Bottlenecks
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Rasterization Bottlenecks

• Interpolating unnecessary vertex attribute

• Poor depth culling efficiency
• Always clear depth
• Coarsely sort objects back to front
• Constrain near and far planes to geometry visible
• Avoid polygon offset
• Again, know your platform! 

• Different advice for different GPUs…
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Texture Bottlenecks
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Texture Bottlenecks

• Texture resolutions should only be as big as needed

• Compress textures:
• Use ATI_TC texture compression
• Palette textures are expanded in the driver.

• Poor texture cache utilization
• Always use mip mapping
• But not necessarily trilinear! 
• Best bang for the buck: LINEAR_MIPMAP_NEAREST
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Fragment Bottlenecks
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Fragment Bottlenecks

• Follow advice for maximizing depth culling efficiency

• Avoid unnecessary texture combine operations
• Example: combine pass that does (Basemap * Constant)
• Do this as a preprocess

• Unlikely bottleneck on fixed-function devices
• But highly common with shaders…
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Framebuffer Bottlenecks
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Framebuffer Bottlenecks

• Turn off Z writes for transparent objects and multipass
• glDepthMask

• Only do alpha blending if you have to
• Use multi-texture to replace multi-passing if possible
• Don’t assume glBlendFunc(GL_ONE, GL_ZERO) is free

• Use appropriate bit depths
• For render-to-texture, use 16-bit color/z if possible
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General Hardware Performance Tips

• Fixed-function lighting
• Per-vertex
• Per-pixel

• Render-to-texture

• Geometry storage
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Fixed-Function Per-Vertex Lighting Tips

• Directional lights are faster than point lights
• Determined by w-component of light position

• Specular computation adds additional overhead
• Disable with specular material of (0, 0, 0, 0)

• Careful with lighting and skinning
• Effectively reduces matrix palette size by half
• Driver needs to transform normal using inverse modelview matrix

• Pre-compute lighting if not dynamic

• ….use per-pixel lighting instead!
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Fixed-Function Per-Pixel Lighting Tips

• Lightmaps for static lighting

• DOT3 bump-mapping for dynamic per-pixel diffuse lighting
• Use directional light & world-space normals for static geometry
• Use cubemap normalizer for tangent-space surfaces
• Reduces dynamic vertex data by allowing effective lighting with less 

geometry
• Goal: avoid dynamic vertex data!

• Projective textures for spotlight effect

• Specular cube map to fake per-pixel specular

• Gloss map to attenuate per-pixel specular
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Render-to-Texture Tips

• Don’t use glCopyTexImage2D!

• Use OES_framebuffer_object for best performance

• Use glGenerateMipMapOES for explicit fast mipmap generation

• Share depth buffer among same-sized offscreen surfaces

• Use 2D offscreen texture for dynamic planar reflections
• Texture matrix to compute projective texture coordinates

• Use cubemap for general dynamic reflections
• Consider using proxy geometry for speed



33

Geometry Storage Tips

• Use GL_SHORT of GL_BYTE for position
• Use modelview matrix to scale to desired range

• ATI tip: use ATI_extended_texture_coordinate_data_formats
• Byte 4.4, Short 4.12, Short 8.8
• Advantage: does not require texture matrix scaling!
• Use GL_SHORT or GL_BYTE on other hardware

• Use GL_SHORT for normals

• For skinning: sort primitives by bone indices

• Use strips and degenerate triangles

• ATI tip: use ATI mesh lists for optimal performance!
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Conclusions

• Locate performance bottlenecks
• Use best-practices to optimize each stage
• Use hardware features to offload from CPU -> GPU
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QUESTION PERIODQUESTION PERIOD
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