Media Processors for Mobile Phones

Designing Games for IMAGEON™ 3D – Enabled Handsets

Claude Benoit Technical Evangelist

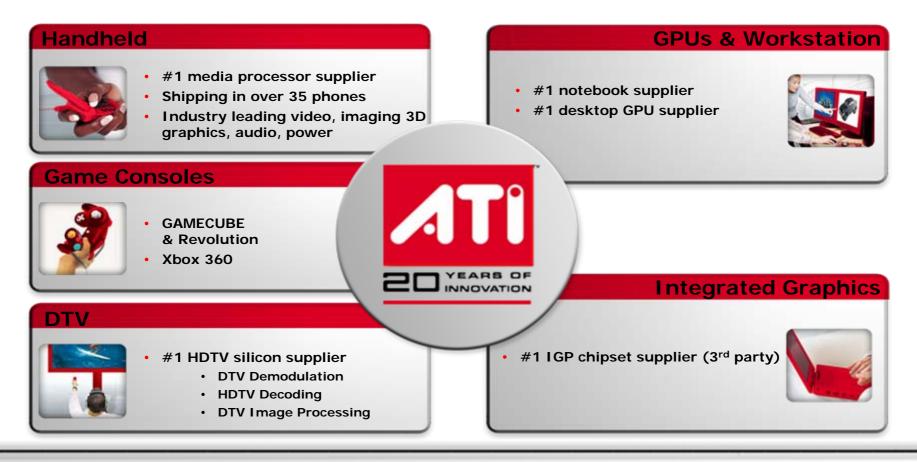
August 31, 2006

OVERVIEW

• ATI in the Industry

IMAGEON[™] 3D Feature Set

• Designing 3D Games for Performance



ATI In the Industry

World Leader in Visual Processing

Our Vision: Bring the most compelling and immersive multimedia solutions to PC and digital consumer markets

One of the World's Largest Fabless Semiconductor Companies

ATI & South Korea Telecom (SKTel)

SKTelecom

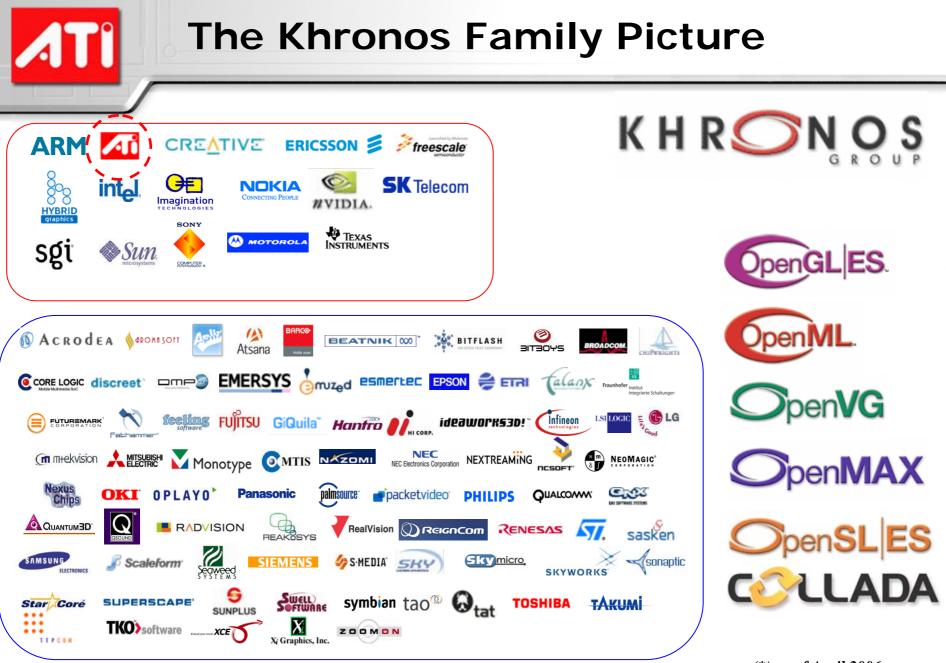
- Strategic technical relationship bringing high performance hardware enabled "3D" & multimedia services to SKT customers
- Alliance formed in 2004
- SKT & ATI joint support of Graphic Instruction Graphic Acceleration (GIGA) 3D specifications
- Joint technical assistance to SKT selected OEM partners
- Joint ISV relations
 - GIGA specific "One on One" developers support
 - SKT & ATI hosting GIGA Developers Conference
- Continued joint efforts on Next Generation GIGA specifications

ATI/Qualcomm Strategic Initiative

"Jointly bringing the unprecedented next generation industry leading 3D technology platform for mobile devices"

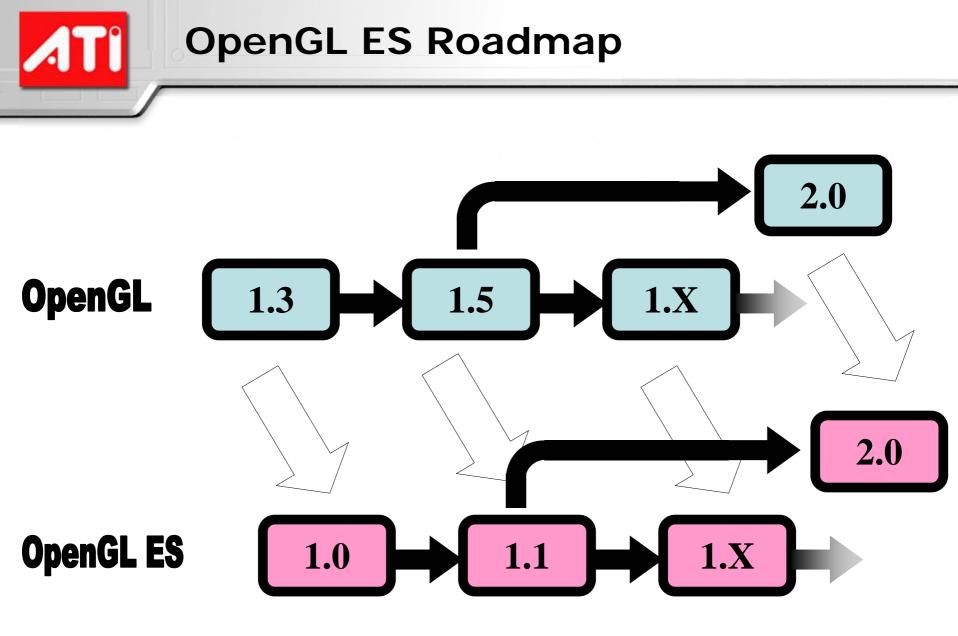
- Provides highest level of 3D performance combined with MSM Launchpad Multimedia suite
- Consistent BREW/OpenGL ES for easy development of next generation content.
 - Games
 - User Interfaces
- Provides proven ISV content relationships & support programs
 - Increasing content quality and "time to market".
- Joint partnership surrounding 3D technology
 - MSM6xxx + IMAGEON W23xx Platform
 - Integrated IMAGEON 3D IP in MSM7xxx Convergence Platform

ATI/Nokia Strategic Relationship



"working closely together to drive high quality multimedia experiences such as music playback, 3D gaming, mobile TV, video and more"

Long-term collaborative effort


Integrated hardware, software & tools

CEDEC 2006

^(*) as of April 2006

IMAGEON[™] 3D Feature Set

	W230x	MSM75xx	W238x
Performance	OpenGL ES 1.0	OpenGL ES 1.0 + Extensions	OpenGL ES 1.1 + Extension Pack + Extensions
Triangle Rate (specs)	1 M triangles/sec	4 M triangles / sec	4 M triangles/sec
3D Pixel Fill Rate (specs)	100 M pixels/sec	125 M pixels/sec	125 M pixels/sec
Frame Buffer			
Supported Resolutions	QVGA Double-Buffered	QVGA / VGA Double-Buffered	VGA Double-Buffered
LCD Orientation	Portrait & Landscape	Portrait & Landscape	Portrait & Landscape
Color	16 bits/pixel	16 bits/pixel	16 bits/pixel
Z buffer	16 bits/pixel	16 bits/pixel	16 bits/pixel
Stencil	-	4 bits/pixel	8 bits/pixel
FBO: Frame Buffer Objects	_	_	Yes (1)

(1) Support for color, Z, stencil; all sub-formats according to OES_framebuffer_object

IMAGEON[™] 3D Feature List

Geometry Engine			
Hardware Transforms	Yes	Yes	Yes
Vertex Buffer Objects	Yes	Yes	Yes
DX8-style Vertex Shaders		-	Yes

W230x

Hardware Point Sprites

Distance-based size factor

	-	Yes	Yes
or	-	-	Yes

MSM75xx

W238x

Vertex Skinning

Number of matrices/vertex Total number of matrices

	-	Yes	Yes
tex	-	4	4
ces	-	32	32

Hardware Lighting

	-	-	Yes
Spotlight	-	-	Yes
Directional	-	-	Yes
Point	-	_	Yes

IMAGEON[™] 3D Feature List

W230x

Texturing			
Texture pipelines	1	2	2
Texture Crossbar	-	Yes	Yes
Texture Compression (1)	- 11	Yes	Yes
Extended Texture Data Formats (2)	-	Yes	Yes
DOT3 Bump Mapping	-	Yes	Yes
Projective Textures	-	-	Yes
Cubic Mapping	-	-	Yes

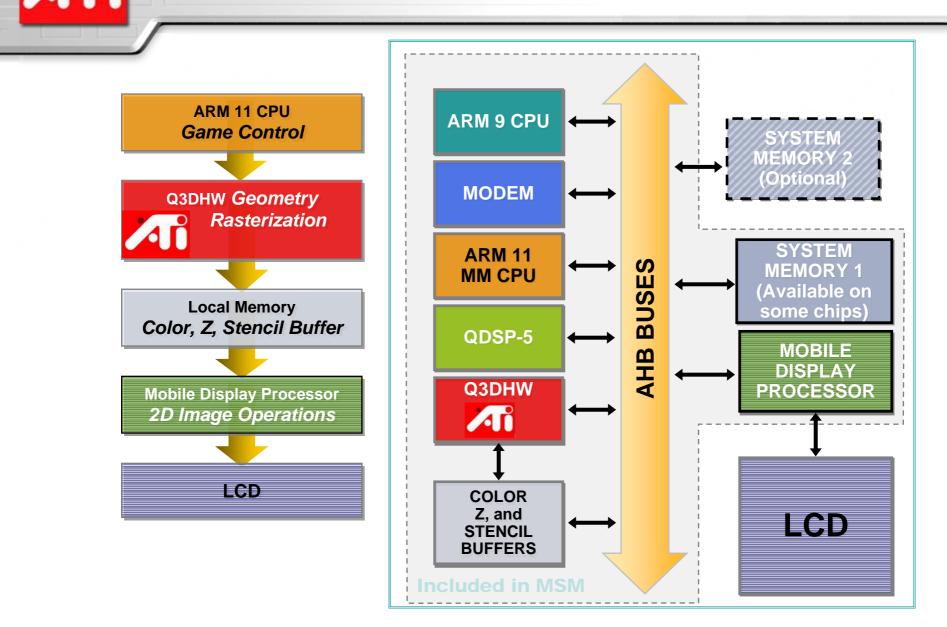
Early Z Culling

-

MSM75xx

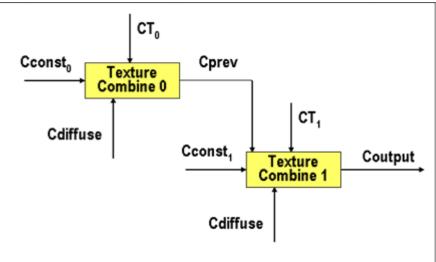
W238x

(1) ATI_TC for both RGB and RGBA


(2) Extended Texture Coordinate Data Formats: 4.4 / 8.8 / 4.12

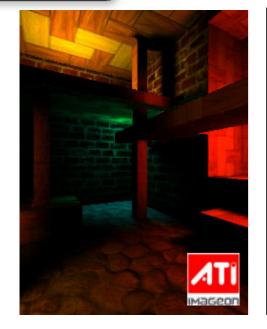
W238x – Architecture Overview **OpenGL ES 1.1 + Extension Pack compliant** W238x Primary Display 2D Engine System Memory 2nd Display **Graphics Engine** Stacked DRAM Engine 3D Imaging Video/Image Power Capture Management Command Host CPU & Baseband Sub-system Audio Processor Capture/Output Memory SRAM Cache Controller Media DSP (Audio/Video) Memory Host CPU I/F Buffer Video Acceleration SD/MMC PLL Clock Source

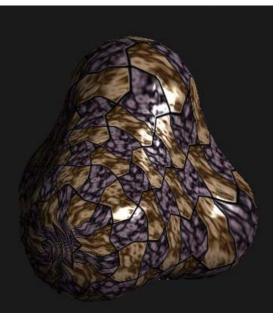
MSM7xxx -- Architecture Overview



OpenGL ES 1.1 – Texture Crossbar

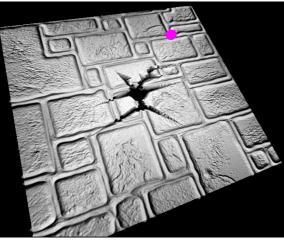
• Important for mobile space because:

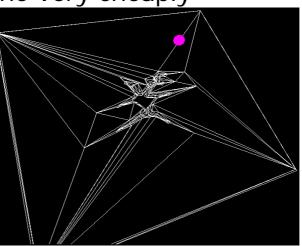

- Allows effects that previously had to be done in multiple passes to be done in a single pass
- Improves performance over multipass because it reduces transform and framebuffer blending costs
- Introduces flexible new equations and inputs that provide for new effects



ATî

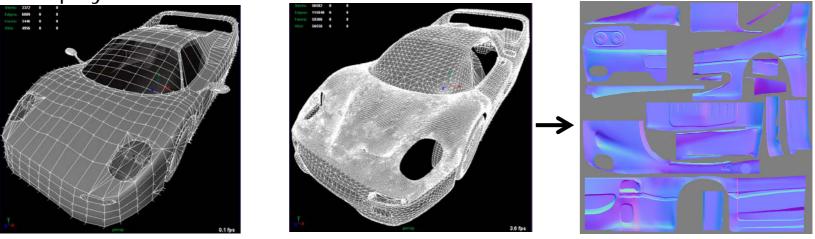
OpenGL ES 1.1 – Texture Crossbar

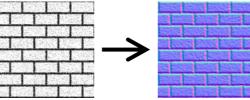



LightMapping MODULATE (A*B) = T0*T1 T0 – Base T1 – Lightmap "Specular" Highlights ADD (A+B) = (T0 * Cdiffuse) + T1 T0 – Base T1 –Specular Cdiffuse = N.L Texture Interpolation INTERPOLATE (A,B,C) = (T0 * Cd.a) + (T1 * (1-Cd.a)) T0 – Grass Texture T1 – Rock Texture Cdiffuse.a = Interpolation factor Source: Delphi3D (http://www.delphi3d.net/)

OpenGL ES 1.1 – DOT3 Bump Map

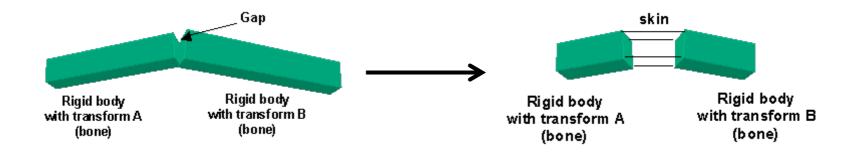
- New blend equation DOT3 introduced in OpenGL ES 1.1
- Provides the ability to do the diffuse lighting equation (N.L) on a per-pixel basis
- Important for mobile because:
 - Provides the appearance of surface complexity with less polygons
 - Reduces geometry memory footprint
 - If not fill limited, can be done very cheaply





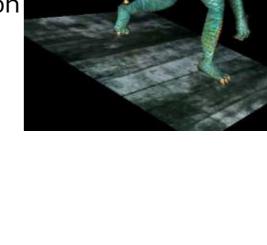
OpenGL ES 1.1 – DOT3 Bump Map

- Many tools provide the ability to generate normal maps
 - ATI's NormalMapper tool generates normal maps from a low and high poly version of a model


- DOT3 maps can also be created directly from height maps
 - ATI's NormalMapGenerator tool uses Söbel filter to generate DOT3
 map

OpenGL ES 1.1 – Skinning

- What is vertex skinning?
 - Solves the problem of gaps in between bones
 - Provides for more realistic looking characters
- Matrix palettes introduced in OpenGL ES 1.1
- Skinning computation is offloaded from the CPU onto the GPU
 - Important for systems with no floating-point support



CEDEC 2006

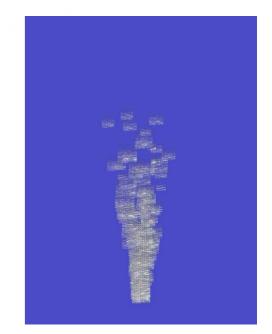
- This is a relatively simple computation which should only happen once perframe per-animation
- This feature is fully orthogonal
 - All GL lighting works

OpenGL ES 1.1 – Skinning

- The matrix palette size and number of vertex units are implementation dependent
- If the matrix palette size is exceeded, break up draw calls by sets of bones
- The keyframe interpolation should still be done on the CPU

OpenGL ES 1.1 – Point Sprites

- Provides a fast method for drawing screen-aligned sprites
- Important for mobile space because:
 - Reduces geometry footprint and transform cost only one vertex per-point sprite
 - Reduces CPU burden for aligning billboard to screen
 - Useful for rendering particle systems as well as other 2-D effects such as:
 - Lens flares
 - Light glows
- Point sprite is rendered as a textured quad
- Any geometry rendered as GL_POINTS will be drawn as a sprite when point sprites are enabled
- Completely orthogonal
 - texture environment and blending can be used as normal


OpenGL ES 1.1 – Point Sprites

• Point size can be controlled in one of two ways:

- A global point size can be set for all points
- A point size can be specified per-vertex to control the size per-point

glPointSize()

- Specifies a global point size
- glPointSizePointer()
 - Vertex array entrypoint to control point size perpoint
 - Used like any of the other vertex arrays functions

 In either mode, points can be distance attenuated (W238x)

$$atten(d) = \frac{1}{a+b*d+c*d^2}$$

OpenGL ES 1.1+ – Cubic Mapping

• W238x

- Accurate real-time reflections in handheld 3D games
 - Given normal & position, compute reflection vector
 - Use reflection vector as texture coordinate
 - Per-pixel computed reflection vector is used to index one of 6 faces of cube
 - Generate per-pixel reflection value
- Per-pixel "specular" lighting
 - Per-vertex specular highlight requires very finely tessellated geometry
 - With cube-maps you can compute specular color per pixel
 - And not require lots of geometry

OpenGL ES 1.1+ – Cubic Mapping

Lighting

Reflections

OpenGL ES 1.1+ – Framebuffer Objects

• W238x

- Provides for more efficient render-to-texture
- The API is contained fully within the GL API
 - no reliance on the window-system or EGL
- Multiple contexts are not required:
 - Removes the performance hit for switching contexts
 - Texture formats that differ from that of the window can be created on one context
- A single framebuffer object allows rendering to an unlimited number of texture objects
- Provides more flexible binding of buffers:
 - Depth/stencil buffers can be used for multiple renderable textures
 - This potentially reduces the memory footprint for certain applications

OpenGL ES 1.1+ – Vertex Shader

• W238x

 Alters or computes new texture coordinates, diffuse color at vertices, sprite point size, fog as part of the vertex processing step.

Similar to DirectX vs_1_0 assembly

• Sample shader:

```
// modelview matrix is stored in c0 - c3
vs_imageon_1_x
mul r0, P.x, c0
madd r0, P.y, c1, r0
madd r0, P.z, c2, r0
madd r0, P.w, c3, r0
mov oP, r0
```


ATI_TC Texture Compression

- MSM7xxx, W238x
- Significant reduction in texture memory & bus bandwidth requirements
- Tools
 - ATI_Compress -- compression library
 - The Compressonator[™] -- standalone app
 - All available on the ATI Developer web site:
 - •www.ati.com/developer

Organizing Your Scene Data - Overview

- Scene DAG organization & traversal
 - Z ordering
 - Textures and state changes
 - Triangle batch size; triangle organization (lists / strips / fans)
 - Best GL data types
 - Bus and bandwidth limitations
 - Geometry transform; Rasterizer
- OpenGL ES feature usage
 - Per-vertex computations; Lighting and fog
 - Texturing; Size, format and filtering
 - Frame buffer

Drawing Order

- Z Ordering
 - Front to back sorting order of the rendered geometry for opaque
 - Back to front sorting order for transparent objects
 - Early Z culling increases performance! (W238x)
 - Avoids texture computations when the object is behind another one.
 - Rough Z sorting enough (main character, scene, skybox)
- State changes
 - Texture thrashing is very costly; reuse textures; best if all the needed textures are preloaded and used across multiple frames
 - State changes are costly, so you should try to render together models that share common features consecutively.
 - Handheld device drivers are much simpler than their PC counterparts, so redundant state changes are not always examined and trivially rejected.
- Recommendation: sort by Z first and then by texture and state

Triangle Organization

- Triangle fans and strips
 - Models specified as fans and strips allow vertices to be reused, thus lowering the cost of transferring data.
 - **Recommendation**: use strips; concatenate strips with identical material & state info using degenerate triangles
- Degenerate triangles
 - Some modeling packages insert degenerate triangles as markers or to start a new object
 - Very helpful since the hardware likes large triangle packets.
 - Recommendation: use degenerate triangles to help send large triangle batches
- Triangles Batch size
 - Trying to pack as many triangles in a single drawing call allows the driver to work more efficiently in passing data to the 3D graphics engine.
 - Recommendation: the larger the better

Best Data Types

- Using GL_FIXED / GL_SHORT / GL_BYTE
 - Internal conversion from byte/short/fixed to floating point for transform and rasterization involves no cost
 - Allows a smaller memory footprint for vertices and texture coordinates
 - Smaller data types saves on bus bandwidth
 - Texture coordinates can be adjusted to [0,1] using a texture matrix
- *GL_ATI_extended_texture_coordinate_data_formats*
 - Fixed point format (4.4, 4.12, 8.8) to save space
 - No need for a texture matrix; aids vertex transform performance

Recommendation

- Use GL_SHORT for vertex data and texture coordinates.
- Use GL_ATI_extended_texture_coordinate_data_formats for texture coordinates

Bus Bandwidth

- From the CPU to the GPU
 - Determines how much data you can send to the 3D engine per frame (vertices, picture data, state commands)
- Vertex Buffer Objects
 - OpenGL ES extension designed to offset the costs of transferring data across the bus.
 - Data is preloaded once and referenced multiple times.
 - Used for static models or rarely deformed models.

- Recommendation: Use VBOs, <u>ALWAYS!</u>
 - It reduces the internal bandwidth requirements (W238x)
 - Avoids internal copying around (MSM7xxx)

Per-vertex Computations

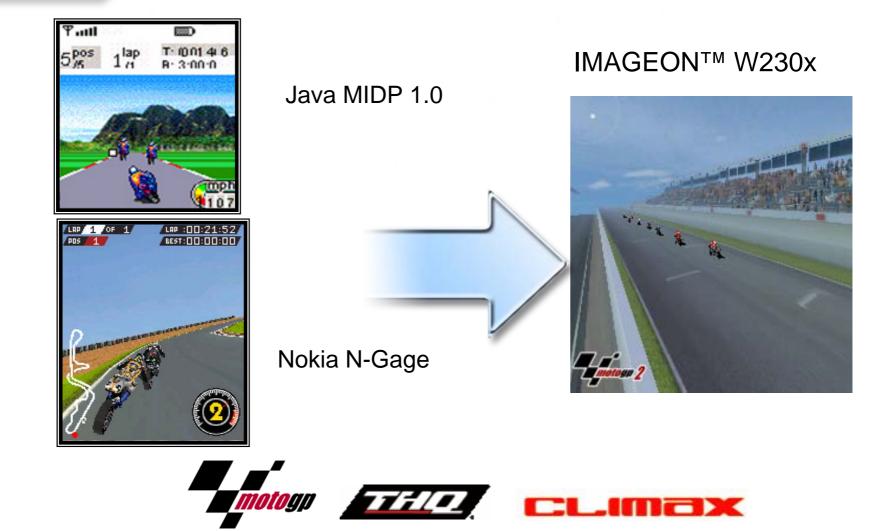
- Lighting computations
 - MSM7xxx: Performed by the device driver (CPU)
 - W238x: Performed by the GPU (vertex shader unit)
 - Per-vertex lighting is computation intensive
 - Recommendation:
 - try to avoid GL lighting if you can; use texture maps instead for lighting effects.
 - W238x: Limit yourself to 2 lights, one point and one directional
- Fog computations
 - Performed by the device driver (CPU) on W230x and MSM7xxx.
 - CPU is doing other tasks also
 - Performed by the GPU for W238x (vertex shader unit)
 - Per-vertex fog is computation intensive
 - Recommendation: Turn off fog if you don't need it.

Organizing Your Scene Data - Texturing

- Texturing
 - Hardware support for perspective correction at no cost
 - Use texture formats close to HW formats
 - Recommendation: Best: RGB565, RGBA4444, RGBA5551
- Texture Pipeline
 - Dual texture pipeline
 - Huge performance gains with mip-mapping
 - Best setting: Linear-Map-Nearest
 - Use texture compression for higher performance
 - Recommendation : Use multipass, compression, mip-mapping.

Designing Games For Performance

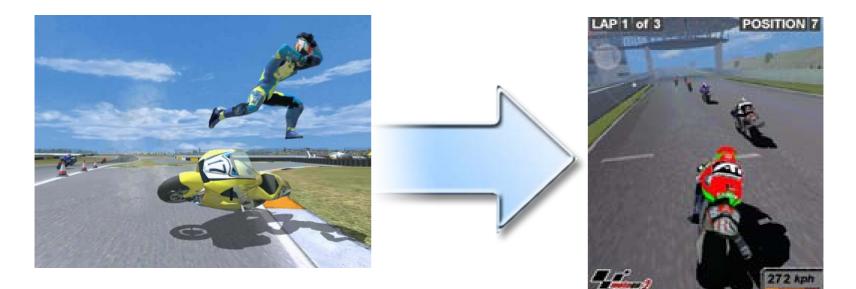
Organizing Your Scene Data – Frame Buffer

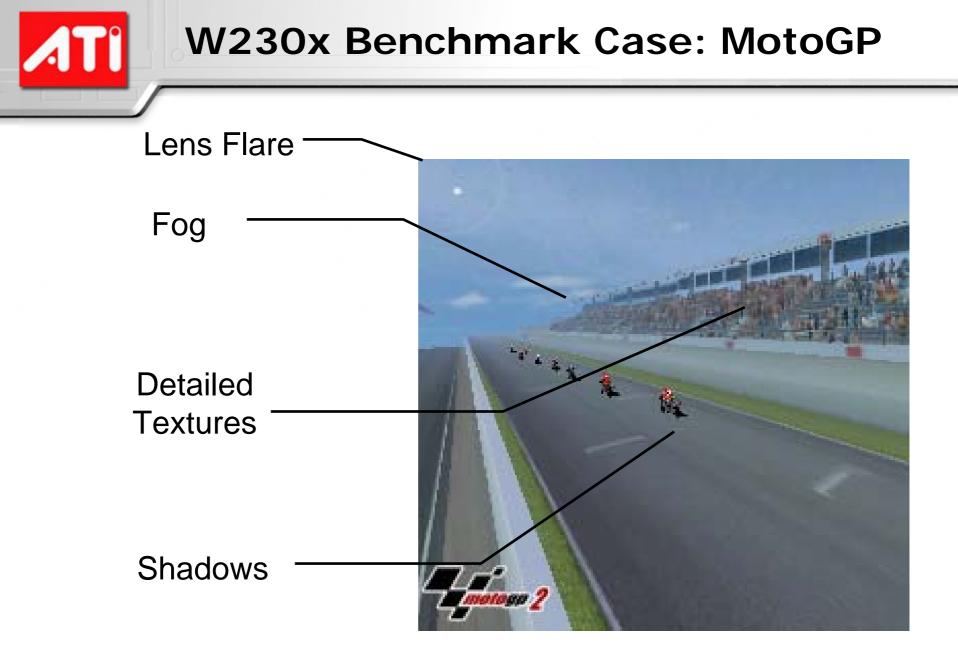

Clear: Color / Stencil / Z

- Fast dedicated memory for color, Z, stencil
- Avoid manual 2D ops
- System memory is slower than dedicated graphics memory

Recommendations:

- Always clear the entire Z / stencil buffer per frame.
- Avoid clearing the color buffer if all pixels are drawn per frame.
- Avoid mocking around the frame buffer

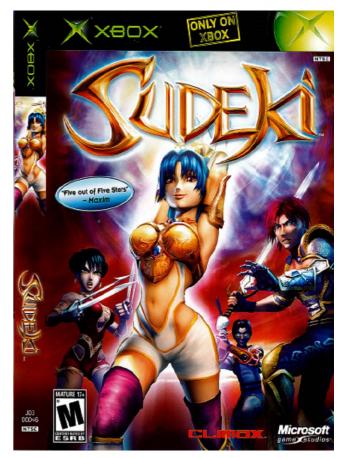



Microsoft XBOX

IMAGEON™ W230x

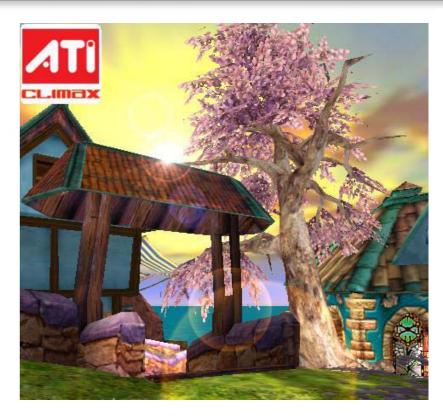
- ATI Reference Platform:
 - ARM9-based @ 168MHz, 64Mb
 - W2300 @ 84MHz
 - 8MB framebuffer
 - QVGA screen
- Performance:
 - 3808Kb of texture
 - 7826 triangles / frame avg
 - 11862 vertices / frame avg
 - Frame Rate: 25 fps avg
- Throughput (avg):
 - ~ 200,000 triangles / sec
 - + \sim 300,000 vertices / sec
 - CPU limited! (game logic)
 - Your mileage may vary!

- Scene Data:
 - 8 bikes: 700 triangles each
 - Track: ~ 14,000 triangles
- Features Used:
 - Mipmapping
 - Gouraud Shading
 - Alpha Blending
 - Single textures
 - Fog
 - Alpha textures
- Optimizations Used:
 - VBO / Mesh lists
 - Mipmapping
 - Frustrum culling (CPU)



W238x Benchmark Case: Sudeki

 Sudeki is a conversion of an existing combat Role-Playing Game (RPG) from a native XBox gaming console code base to a functioning demonstration version for ATI's IMAGEON[™] 3D technology.



W238x Benchmark Case: Sudeki

- The IMAGEON[™] W238x multimedia processor adds more texturing flexibility, character skinning and particle effects than the IMAGEON[™] W230x thus enabling games that require
 - 1) dynamic character based games such as action, sports and RPGs,
 - 2) richer, organic environments (rather than rigid), and
 - 3) higher polygon count and highly flexible texturing capabilities.

- ATI Reference Platform:
 - ARM9-based @ 400 MHz, 64Mb
 - W2380 @ 96MHz
 - 16MB framebuffer
 - VGA screen
- Throughput (avg):
 - ~ 1.2M triangles / sec (VGA)
 - ~ 3.1M triangles / sec (QVGA)
 - Your mileage may vary!

QUESTION PERIOD

