

高度なスキン レンダリング

Bryan Dudash デベロッパー テクノロジ エンジニア 2007年9月

デモ:人間の頭部
皮膚の外観
システムの概要
鏡面の反射率
散乱理論
高度な皮下散乱

© NVIDIA Corporation 2007

● シミュレートするのが困難

シミュレートするのが困難 ディテール化

シミュレートするのが困難 ディテール化 最新のスキャン

皮膚の外観

皮膚の外観

● 大半のマテリアルは2つの構成要素を使用

● 大半のマテリアルは2つの構成要素を使用

● 表面反射率(スペキュラー)

© NVIDIA Corporation 2007

● 大半のマテリアルは2つの構成要素を使用

- 表面反射率(スペキュラー)
- 🔍 表面反射率(ディフューズ)

● 大半のマテリアルは2つの構成要素を使用

- 表面反射率(スペキュラー)
- 表面反射率(ディフューズ)

● 物理ベースのモデルを使用

● 大半のマテリアルは2つの構成要素を使用

- 表面反射率(スペキュラー)
- 表面反射率(ディフューズ)
- 物理ベースのモデルを使用
 - スペキュラーBRDF(双方向反射率分布関数)

● 大半のマテリアルは2つの構成要素を使用

- 表面反射率(スペキュラー)
- 表面反射率(ディフューズ)
- 物理ベースのモデルを使用
 - スペキュラーBRDF(双方向反射率分布関数)
 - 効果的な皮下散乱の近似式

● スキン[DJ2006]の物理ベースのモデルから開始する

● スキン[DJ2006]の物理ベースのモデルから開始する ● 最上位のインタラクションを検討

● スキン[DJ2006]の物理ベースのモデルから開始する ● 最上位のインタラクションを検討

● 光りが反射する量

スキン[DJ2006]の物理ベースのモデルから開始する 最上位のインタラクションを検討

- 光りが反射する量
- 🤍 光りの向き

● 平均で入射光線の最大6%だけが直接反射する [Tuchin 2000]

平均で入射光線の最大6%だけが直接反射する [Tuchin 2000]

- これはフレネル反射によるものである
 - 皮膚によって色は決まらない

平均で入射光線の最大6%だけが直接反射する [Tuchin 2000]

- これはフレネル反射によるものである
 - 皮膚によって色は決まらない
- 最上位の皮膚表面が粗い
 -)入射角度は1つ:出射角度は様々

- これはフレネル反射によるものである
 - 皮膚によって色は決まらない
- 最上位の皮膚表面が粗い
 -)入射角度は1つ:出射角度は様々
 - ▶ スペキュラーBRDF機能を使用

どのBRDFを使用すべきか

© NVIDIA Corporation 2007

どのBRDFを使用すべきか
 PhongとBlinn-Phong
 物理ベースではない
 もっと改良できる

どのBRDFを使用すべきか
 PhongとBlinn-Phong
 物理ベースではない
 もっと改良できる
 物理ベースのモデルに変更

● 残りの94%については?

© NVIDIA Corporation 2007

皮下の反射率

● 残りの94%については?● 皮下散乱を計算する必要がある

● 皮膚にソフトな外観と色を与える

● 皮下散乱

- 皮膚にソフトな外観と色を与える
- 計算コストが高い

* XYZRGB Inc.無料提供のスキャン データ

皮下散乱あり

● 計算コストが高い

皮下散乱なし

● 実際の外観に不可欠

2つの構成要素の反射率 スペキュラーBRDF(双方向反射率分布関数)

● 皮下散乱の近似式

● 2つの構成要素の反射率

- スペキュラーBRDF(双方向反射率分布関数)
- 皮下散乱の近似式

🔍 スペキュラー

- Kelemen Szirmay-Kalos 2001 BRDF
- Schlickの高速フレネル
- ●「Weyrich et al. 2006」の測定パラメータ

● 2つの構成要素の反射率

- スペキュラーBRDF(双方向反射率分布関数)
- 皮下散乱の近似式

🔍 スペキュラー

- Kelemen Szirmay-Kalos 2001 BRDF
- Schlickの高速フレネル
- ●「Weyrich et al. 2006」の測定パラメータ

🔍 皮下

- 高度なテクスチャ空間の拡散
- マップ補正にストレッチをかける
- 何回かガウスぼかしをかけ、合成する

物理ベースのBRDFを使用

●物理ベースのBRDFを使用

PhongとBlinn-Phongを改良可能

- ●物理ベースのBRDFを使用
- PhongとBlinn-Phongを改良可能
- Torrance-Sparrowは現実性を証明した
 - 正確に計算すると長時間かかる

- ●物理ベースのBRDFを使用
- PhongとBlinn-Phongを改良可能
- Torrance-Sparrowは実用性を証明した
 - 正確に計算すると長時間かかる
- Kelemen Szirmay-Kalos 2001
 - TSより高速
 - Schlickのフレネル項でより高速に

Phong vs. 物理ベースのBRDF

*[Kelemen and Szirmay-Kalos 2001]

Phong vs. 物理ベースのBRDF

 ここでは、Kelemen-Szirmay-Kalos 2001を使用する

BRDFを使用したレンダリング

BRDFを使用したレンダリング

BRDFを使用したレンダリング

specularLight += lightColor[i] * lightShadow[i] * rho_s *
specBRDF(N, V, L[i], eta, m) * saturate(dot(N, L[i]));

BRDFを使用したレンダリング

◎ dot(N, L)が重要

● 点光/スポット光に対してのみ動作する

- 環境光では高額でとなる
- 光沢反射
 - 「Kautz and McCool 2000」を参照

specularLight += lightColor[i] * lightShadow[i] * rho_s *
specBRDF(N, V, L[i], eta, m) * saturate(dot(N, L[i]));

すべての物理ベースのBRDFには フレネル項「F」が含まれる

 すべての物理ベースのBRDFには フレネル項「F」が含まれる
 屈折率(eta)を理解する必要がある

● 皮膚研究を確認: 1.4 [DJ2006]を使用

すべての物理ベースのBRDFには フレネル項「F」が含まれる 屈折率(eta)を理解する必要がある 皮膚研究を確認: 1.4 [DJ2006]を使用

● 誘電体、非偏極のフレネル反射

すべての物理ベースのBRDFには フレネル項「F」が含まれる

- 回折率(eta)を理解する必要がある
- 皮膚研究を確認: 1.4 [DJ2006]を使用
- 誘電体、非偏極のフレネル反射
- Schlickの高速フレネル近似式を使用

```
// Hは標準的な半角ベクトルである。F0は法線入射での反射率を示す
(皮膚の場合、0.028を使用)。
```

float fresnelReflectance(float3 H, float3 V, float F0)

```
float base = 1.0 - dot( V, H );
float exponential = pow( base, 5.0 );
return exponential + F0 * ( 1.0 - exponential );
```

スキンをレンダリングするためのフレネル反射率 の пいIDIA.

テキストとしてフレネル式を使用

Schlickのフレネル式を使用

粗さのパラメータ

● 粗さのパラメータ「m」の設定方法とは?

*[Donner and Jensen 2005]

粗さのパラメータ

● 粗さのパラメータ「m」の設定方法とは? ● 顔[DJ2005]の場合、0.3が良い平均値となる

*[Donner and Jensen 2005]

粗さのパラメータ

● 粗さのパラメータ「m」の設定方法とは?

-) 顔[DJ2005]の場合、0.3が良い平均値となる
-) 現在の研究を確認(Weyrich et al. 2006)
 - 顔の10の領域でmとrho_sを測定する
 - Torrance Sparrowモデルを前提する
 - Kelemen Szirmay-Kalos 2001の調整に効果がある

実際に多くの顔から測定した平均値– Weyrich et al. 2006 (SIGGRAPH)

スペキュラー量

粗さ、m

一定の粗さ、m = 0.3

「Weyrich et al. 2006」から測定した値

粗さのパラメータ

代案: アーチストによる手書きのマップ USC ICT Graphics研究所による最近の研究 ピクセル単位でrho_sを取得 一定の粗さ、mを前提 素晴らしい光偏光アプリケーション http://gl.ict.usc.edu/research/FaceScanning/

● 皮膚のフレネル反射は白色である

スペキュラー カラー

皮膚のフレネル反射は白色である スペキュラー項とカラーを乗算する必要はない rho_sマップはスカラーマップである

スペキュラー カラー

残りの光については?

皮膚の層

皮膚の<u>層</u>

光は他の場所から出射する 光は通過場所に応じて色が決まる

皮膚の層

この対処法とは?

一見、不可能な作業:
 考えられるパス数が無限大
 方向による影響はどうなるのか?

皮膚の層

● 皮膚の場合、この距離は非常に短い:

0.02083mm(redの波長)

皮膚の層

* [Donner and Jensen 2005]の三層スキン パラメータを使用して計算

10分の1が最初の層を通過一拡散している! すべての光を追跡一方向は無視 光の後方反射は拡散である(全方向で等しい)

光ごとに(N・L)を実行し、ディフューズ カラーを乗算する その後、スペキュラーを追加する 簡単、でしょ?

皮膚は乾燥 して固くなって いるように見 える

上手くいかなかった理由

● 2つのことを忘れていた

ある場所に光が入射し、別の場所から出射する方法に対処していなかった(重要!)

● 脂質のある粗い表面の透過率は均一ではない(わずかに)

現在ではどうか?

マルチレイヤ2005

*Craig DonnerとHenrik Wann Jensenからの無料提供の画像
© NVIDIA Corporation 2007

マルチレイヤ2005

2005 SIGGRAPH文書(Craig DonnerおよびHenrik Wann Jensen著)

● 三層の皮膚モデル

- 医療および光学コミュニティで測定された散乱パラメータ
- 高品質のヘッドスキャン(XYZRGB)

▶ 最大5分のレンダリング時間

三層vs.ダイポール

● 特に、これらは多層化された皮膚モデルの重要性を示す

一層の皮膚モデル

三層の皮膚モデル

*Craig DonnerとHenrik Wann Jensenからの無料提供画像

© NVIDIA Corporation 2007

ここで何が起きているのか?

一層の皮膚モデルでは青白く見える
 表皮

 散乱が狭い

 下位層

 散乱が広い
 ほとんどが赤い

 一層は機能していないものと想定する

多層拡散の概算

この拡散を概算できる
 入射光から開始する
 表面上でブラーする
 ブラーを重ねる
 合成する(リニアの合成)

ブラーする理由

平面で光の散乱の多い面に当たる狭い白の集束 ビームを検討する

― 集束した入射ビーム

© NVIDIA Corporation 2007

ブラーする理由

●「散乱が多い」ことは拡散を意味する

© NVIDIA Corporation 2007

拡散プロファイル

距離ではどれくらいの光量があるか? マテリアルの拡散プロファイル

●この[DJ2005]は計算可能

- 皮膚にとって一番重要なものは何?
 - R、G、Bではっきりと異なる
 - これらのプロファイルの 形状は「青白い皮膚vs.本物の皮膚」を意味する

主要な散乱の見解

● 最初の光を収集

● 各ポイント

- 最初の光を収集
- 隣接するピクセルに散乱

- 最初の光を収集
- 隣接するピクセルに散乱
- 距離に依存

- 最初の光を収集
- 隣接するピクセルに散乱
- 距離に依存
- これがブラーである!

● これがブラーである!

ロケーションごとに入射光のローカル パッチを
 実行する

© NVIDIA Corporation 2007

曲面上の拡散

● 実際により複雑な表面を必要とする

耳に反射する垂直のレーザー線

© NVIDIA Corporation 2007

● これをテクスチャ空間の拡散と呼ぶ

(Simon Green: GPU Gems 1)

● この技術をいくつかの方法で改良する

● これは、以前にリアルタイムで行われた

- 歪みを補正する
- いくつかのブラーを保ち、リニアに合成する
- ディフューズ カラーを使用する方法

テクスチャ空間の拡散

テクスチャ座標を使用したレンダリング

- テクスチャ座標を使用して、バーテックス シェーダの projCoordを修正する
- ライティングのため、正確なworldCoordとworldNormalをフ ラグメントシェーダに渡す

```
v2f.projCoord = float4( texCoord.x * 2.0 - 1.0,
    texCoord.y * 2.0 - 1.0, 0.0, 1.0 );
```


フラグメント シェーダは、皮下の放射照度を計算する
 オフスクリーン テクスチャに保存する

● 現在では、効果的にブラーできない

ブラー操作ごとに2つのパス

● 各ブラー操作はガウスぼかしである

- 分離して計算可能
- 非常に効率的

階層的なガウスぼかし

● 各ブラー操作はガウスぼかしである

- 分離して計算可能
- 非常に効率的

● ブラーされたテクスチャの階層を構築

- 最後から開始する
- 少ないガウスぼかしを何回も行う=大きなガウスぼかしを1回行う
- 幅広くブラーするために、より薄くサンプリングできる

個別のGaussian Convolution

● 個々のガウスぼかしを1回も使用できない

個別のGaussian Convolution

● 予想/測定したプロファイルと実際の皮膚を一致させる

いくつかのガウス ブロブをリニアに合成して、既存の プロファイルと一致させる

● 人間の皮膚の場合、以下を推奨する

	幅(mm)	レッド	グリーン	ブルー
•	0.042 *	0.233	0.455	0.649
•	0.220	0.100	0.336	0.344
	0.433	0.118	0.198	0
	0.753	0.113	0.007	0.007
	1.412	0.358	0.004	0
	2.722	0.078	0	0

最終のリニアな 合成

*最小のブラーレベルは、最終レンダリングパスで直接、再計算されたライティングである(ブラーされなかった)。

ブラーの重み付け

© NVIDIA Corporation 2007

ブラー

リニアに合成されたGaussian Convolution

● 一度に1つのカラー

レッド

● テクスチャ空間では、均一なブラーは避ける ● テクスチャ空間の1つのピクセル=実空間で一定の距離

均一なブラー

歪みを補正した ブラー

UV歪み

正確な歪み補正

● 歪みは簡単に推測可能 ● マップを計算し、ブラーを逆にストレッチする

float3 derivu = ddx(v2f.worldCoord);
float3 derivv = ddy(v2f.worldCoord);

// 0.001 scales the values to map into [0,1]
// this depends on the model
float stretchU = 0.001 * 1.0 / length(derivu);
float stretchV = 0.001 * 1.0 / length(derivv);

● これらの値を使用して、ブラー(方向)にスケールをかける

X軸でのブラー半径

Y軸でのブラー半径

別々の畳み込みステップそれぞれをローカルに補正する

UとVで単独に補正する

ストレッチ補正

解決方法:

ストレッチ補正なし

ストレッチ補正あり

© NVIDIA Corporation 2007

継ぎ目の処理

UVレイアウトによって
 継ぎ目が発生する
 継ぎ目のエッジの周囲は
 黒に囲まれている
 黒の領域と隣接するピクセル

黒の領域と隣接するピクセルの 色が混じり、暗い継ぎ目となっ ている

継ぎ目の処理

- クリアなカラーを変更する
- 歪みマップを編集する
- オブジェクトあり/なしのアルファ マップ
- 複数のUVセット(低速)

ここで書き込むカラーは? ディフューズ カラーを使用する方法とは?

● 最初に行うこと: dot(N, L) * diffuseCol

● その後

- ブラーを何重にもかける
- リニアにブラーを合成する
- スペキュラーを追加する

● 最初に行うこと: dot(N,L) * diffuseCol

これはOKのように見える
 高周波成分を削減可能

2番目に行うこと:
 N・L項のみを保存する
 ブラーを何重にもかける
 リニアにブラーを合成する
 DiffuseColを乗算する
 スペキュラーを追加する

② 2番目に行うこと: ドット(N,L)をブラーし、合成してから diffuseColを乗算する

- これはOKのように見える
- ⑤写真ベースのマップならば、おそらくOKである
- 色のにじみがない-残されている高周波コンテンツが多す ぎる
- 高周波のディテールは、下層の上に「位置する」

● 3番目に行うこと:両方を実行することができるか?

ブラーの前後にカラーリングを行う その都度、乗算する必要がある DiffuseColを2回、乗算することはできない

ブラーの前後にカラーリングを行う
 その都度、乗算する必要がある
 DiffuseColを2回、乗算することはできない

sqrt(DiffuseCol)を2回、乗算する 1回はブラーの前に もう1回はブレンドの後に

半々: sqrt(diffuseCol)を適用し、ブラーし、合成してから sqrt(diffuseCol)を適用する

次に、光を散乱しない皮膚面上の非常に薄い吸収層をシ ミュレートする

● 次の点で現実的である

- 光はこのディテール層と2回接触する必要がある
- 🌑 1回は入射する
- 1回は出射する
- 前提

● 皮膚のバリエーションは最上部の薄い層に現れる

● アートの自由

● 以下の代わりに

● 前に* sqrt(diffuseCol)

● 後に* sqrt(diffuseCol)

🔍 以下を使用する

● 前に* pow(diffuseCol, mix)

● 後に* pow(diffuseCol, 1.0 – mix)

Adrianneでは、mix = 0.82を使用する

ブラーの合成

float3 diffuseLight = nonBlur * E1 * pow(diffuseCol, 0.5);

```
float3 blur2tap = f3tex2D( blur2Tex, v2f.c_texCoord.xy );
float3 blur4tap = f3tex2D( blur4Tex, v2f.c_texCoord.xy );
float3 blur8tap = f3tex2D( blur8Tex, v2f.c_texCoord.xy );
float3 blur16tap = f3tex2D( blur16Tex, v2f.c_texCoord.xy );
float3 blur32tap = f3tex2D( blur32Tex, v2f.c_texCoord.xy );
```

```
diffuseLight += blur2 * blur2tap.xyz;
diffuseLight += blur4 * blur4tap.xyz;
diffuseLight += blur8 * blur8tap.xyz;
diffuseLight += blur16 * blur16tap.xyz;
diffuseLight += blur32 * blur32tap.xyz;
```

```
// renormalize weights so they sum to 1.0
float3 norm2 = nonBlur + blur2 + blur4 + blur8 + blur16 + blur32;
diffuseLight /= norm2;
diffuseLight *= pow( diffuseCol, 0.5 );
```

エネルギー節約

● N・Lのみを使用する問題

- エネルギーを節約していなかった
- 粗くて脂質のある表面の方向エフェクトを無視
- 皮膚の場合、差はわずかである

慎重なエネルギー節約

dot(N,L)

ガンマ補正

あなたのモニタは真実を伝えていない!
 表示された輝度=pixelValue^2.2
 すべてのディスプレイはこの点を実行する
 デジタル カメラはこの点を認識している
 カメラはこれを補正する
 われわれもそうすべき

ガンマ補正あり

ガンマ補正なし

© NVIDIA Corporation 2007

- BORSHUKOV G., AND LEWIS, J. 2003. Realistic human face rendering for "the matrix reloaded" ACM SIGGRAPH 2003 Conference Abstracts and Applications (Technical Sketch)
- DEBEVEC, P., HAWKINS, T., TCHOU, C., DUIKER, H.-P., SAROKIN, W., AND SAGAR, M. 2000. [Acquiring the reflectance field of a human face.] Computer Graphics, SIGGRAPH 2000 Proceedings, 145–156.,
- DONNER C., AND JENSEN, H.W. 2005. Light diffusion in multi-layered translucent materials. Proceedings of SIGGRAPH 2005, 1032-1039.
- GREEN, S. 2004. [Real-time approximations to subsurface scattering] GPU Gems, R. Fernando, Ed. Addison Wesley, Mar., ch. 16, 263–278.
- JENSEN, H. W., AND BUHLER, J. 2002. A rapid hierarchical rendering technique for translucent materials ACM Trans. Graph. 21, 3, 576–581.
- JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRAHAN, P. 2001. [A practical model for subsurface light transport.] *Proceedings of SIGGRAPH 2001*, 511-518.
- KRISHNASWAMY, A., AND BARONOSKI, G. V. G. 2004. A biophysically-based spectral model of light interaction with human skin. *Proceedings of EUROGRAPHICS 2004*, vol. 23.
- PHARR, M., AND HUMPHREYS, G. 2004 Physically Based Rendering: From Theory to Implementation Morgan Kaufmann Publishers Inc.
- WEYRICH, T., MATUSIK, W., PFISTER, H., BICKEL, B., DONNER, C., TU, C., MCANDLESS, J., LEE, J., NGAN, A., JENSEN, H. W., AND GROSS, M. 2006. [Analysis of human faces using a measurement-based skin reflectance model.] ACM Transactions on Graphics 25, 3 (July), 1013–1024.

