

Physics Meets Animation Character Stunts in Just Cause 2

John Fuller - Technical Director

Talk Overview

Motion Control

Animation + Physics +IK

Parametric Animation

Effectors / Manipulators

Just Cause 2 : Requirements

- Huge open world
- Fast-paced, over-the-top action
- Reactive environment
- High level of responsiveness
- Large number of game mechanics
- Large number of vehicles

Freedom!

Concept Video

Fast-paced

Motion Transitions

Motion States - Root Node Update

- Desired motion:
 - Procedurally driven
 - Animation driven
 - Parented (Attached)

- External influences:
 - Collisions
 - Gravity

Parented Motion

• Exists in Local Space

• Animation = change in offset

Rigid Body Proxy

Control physical effects

• Ragdoll : hard to control

Single rigid body representation

Constrained to other objects

Recoil

Pre-visualization

Ragdoll / Animation / IK Control Flow

Sample Animation Pose

Foot / Hand IK attachment

Update ragdoll

Physics Update

Aim constraints

Skinning

Pose Driving

- Drive ragdoll towards animation pose (using impulses / joint motors)
- •Not a keyframed ragdoll can still respond to collisions

Transition from Ragdoll to Animated

1. Compare orientation with a number of Get-Up start frames

2. Drive ragdoll towards the closest start frame

3. When close to target pose, start the animation and blend to it

Spinning Ragdolls

- Extreme explosion reactions
- Apply extra impulses to ragdoll bones
- Vector field
 - -> Get an axis perpendicular to explosion
 - -> Evenly spread impulses to achieve rotation
 - -> Synchronized swimmers!!
- Randomness
 - -> Vary the axis within a 45 degree cone

Authoring Ragdoll / Character setup

Authoring Ragdoll / Character setup


```
<object name="Setting HangOnVehicle">
   <value name="name" type="string">HangOnVehicle</value>
   <value name="ragdoll file id" type="string">ragdoll file 1</value>
    <object name="parameters">
        <value name="controller type" type="string">RIGID BODY</value>
        <value name="map anim to physics" type="int">1</value>
        <value name="map physics to anim" type="int">1</value>
        <value name="blend speed" type="float">2</value>
       <value name="blend weight" type="float">0</value>
       <value name="tau" type="float">0.95</value>
       <value name="damping" type="float">0.45</value>
        <value name="proportional recovery velocity" type="float">10.0</value>
        <value name="constant recovery velocity" type="float">4.0</value>
        <value name="max force" type="float">10000.0</value>
        <value name="hierarchy gain" type="float">0.01</value>
        <value name="velocity damping" type="float">0.0</value>
        <value name="acceleration gain" type="float">0.35</value>
        <value name="velocity gain" type="float">0.35</value>
        <value name="position gain" type="float">0.35</value>
        <value name="position max linear velocity" type="float">1000.0</value>
       <value name="position max angular velocity" type="float">1000.0</value>
        <value name="snap gain" type="float">0.25</value>
       <value name="snap max linear velocity" type="float">0.1
        <value name="snap max angular velocity" type="float">0.1</value>
        <value name="snap max linear distance" type="float">0.01
        <value name="snap max angular distance" type="float">0.01</value>
   </object>
    <object name="keyframed parts">
        <value name="part 1" type="string">ragdoll LeftHand</value>
       <value name="part 3" type="string">ragdoll LeftFoot</value>
       <value name="part 4" type="string">ragdoll RightFoot</value>
   </object>
</object>
```


Ragdolls and parent motion

Ragdoll pros

- React to parent
- Collision handling

Ragdoll cons

- Feeling of intention and awareness
- Poor momentum transfer

Traditional Link Between Physics and Animation

•State Machine:

"Series of discrete states where events cause state transitions"

- •Example:
 - Guy hangs from a jeep door
 - Faster jeep turns, the more he loses control
 - Continuous changes no discrete event

Discrete events are not suitable for continuous states

Physics Driven Animation

- Smart blend states
- Physics values drive blending
- Continuous values give smooth motion
- Non-repetitive behavior!

"Parametric Blends"

How does it work?

- All poses are baked into two animations
 - Upper row from left to right
 - Lower row from left to right

• Middle row is the result of blending

- Project parent's angular velocity onto...
 - X-axis to determine blend weight
 - Y-axis to determine sample time

Ragdoll Only

...One Step Further

- Multiple parameterizations create variation
- Parachuting has the following inputs:
 - Acceleration, velocity and gamepad input
- Riding motorcycle has the following inputs:
 - Suspension length rate of change
 - Speed
 - Orientation
 - Gamepad input

Physics Driven Animation

Animation Driven Impulses

Wanted data driven physical effectors

Animations contain annotations, e.g.:
 DOWNWARD-IMPULSE-LIGHT
 DOWNWARD-IMPULSE-HEAVY

Impulses applied to parent or target body

• E.g. foot down event, enter vehicle, some cling positions

Motorbike Tilt

• Let the player feel in control of the driver

• You control the player's lean on the bike, affecting C.O.M.

Makes it easier to tip backwards

Also allows for leaning forwards / backwards in air

The Almighty Grapple

Physical constraint

Can 'tie' nearly any two physics objects together

 Custom impulses applied: e.g. yanking, wall tether, dual tether two enemies, etc.

• Shorten the constraint to draw things together

Animation Driven Impulses

Findings

Problems we faced / Tips

Ragdoll Stability:

Requires constant maintenance

- Animation poses must not violate constraint limits
 - Use different ragdolls to suit the context

QA unfamiliar with problem domain

Monitor edge cases : have a fallback

Problems we faced / Tips

Ragdoll Driving:

Varied quality at different speeds

Blending:

Noisy physics signal - filter

Dependencies:

Difficult to tweak without side effects

Thanks!

CEDEC

Yuki & Yuriko

Just Cause 2 Team

Avalanche Studios

Eidos

Square Enix

Havok

