
Future Technologies for 
Game Sound Design 

Nicolas Fournel – Principal Audio Programmer

Sony Computer Entertainment Europe



Game Audio Evolution

pong2.wav


Game Audio Evolution



Game Audio Evolution



Game Audio Evolution



Overview

• Audio Analysis

• Procedural Audio

• Combining them



Audio Analysis



Audio analysis is more than…

RMS (Root Mean Square)

FFT (Fast Fourier Transform)



More fun with spectra

Other features based on the spectrum

• Spectral Flux, Rolloff, Centroid, Flatness, Kurtosis etc…
• Noisiness / inharmonicity / even and odd harmonics

Other ways to detect spectral content

• Goertzel algorithm
• Constant  Q filter banks 
• Wavelets



SCEE’s AFEX



AFEX Tool



Game Design Applications

• Singing games

• Levels generated by user music 

• Voice recognition

• Sound classification

Even more important with 

social gaming !



Selecting sample files

Typical sample files browsers:

AFEX Browser



Browsing sound effects libraries 



Example: AFEX Explorer



Dicto: checking dialogue assets



Some of the games Dicto helped



Audio analysis at run-time

• Most audio engines are…

deaf !

They make decisions that impact the audio output of a game 
without knowing what they are playing.



Audio Engines 



Spectral Matrix



Perceptual Voice Management



Dynamic Mixing



Audio Shaders



Procedural Audio



What is Procedural Audio ?

For sound effects:

• Real-time sound synthesis

• With control parameters coming from other sub-systems

• Examples of existing systems:
• WWISE SoundSeed (Impact and Wind / Whoosh)

• AudioGaming

• SCEE’s Spark

Applies also to music (algorithmic composition) and dialogue 
(Phonetic Arts)



When to use PA ?

Good candidates:

• Repetitive (e.g. footstep, impacts)

• Large memory footprint (e.g. wind, ocean waves)

• Require a lot of control (e.g. car engine, creature vocalizations)

• Highly dependent on the game physics (e.g. rolling ball, sounds driven by
motion controller)

• Just too many of them to be designed (vast universe, user-defined
content...)



Two approaches to Procedural Audio

Bottom-Up:

• examine how the sounds are physically produced

• write a system recreating them

Top-Down 

• analyse examples of the sound we want to create

• find the adequate synthesis system to emulate them



Procedural Model Example : Wind

Good example of bottom-up versus

top-down design

• Computational fluid dynamics to 
generate aerodynamic sound

(Dobashi / Yamamoto / Nishita)

• Noise generator and bandpass 
filters  (Subtractive synthesis)



Procedural Model Example : Whoosh

• Karman vortices are periodically
generated behind the object
(primary frequency of the
aerodynamic sound)

• Using classic subtractive synthesis
is cheaper

• Ideal candidate for motion controllers



Procedural Model Example :Whoosh

Heavenly Sword: 
• about 30 Mb of whooshes on disk 

• about 3 Mb in memory at all times

Recorded whooshes

Subtractive synthesis (SoundSeed)

Aerodynamics computations



Procedural Model Example
Water / Bubbles

Physics of a bubble is well-known

• Impulse response =  damped sinusoid

• resonance frequency based on radius

• Energy loss based on simple thermodynamic laws

• Statistical distributions used to generate streams  / rain

• Impacts on various surfaces can be simulated

Bubbles generated with procedural audio



Procedural Model Example : Solids



Procedural Model Example : Solids

Other solutions for the analysis part:

• LPC analysis

Source – Filter separation

• Spectral Analysis

Track modes, calculate their frequency, amplitude  and 
damping 



Procedural Model Example : Solids

Different excitation signals for:

• Impacts (hitting)

• Friction (scraping / rolling / sliding)

Interface with game physics engine / collision manager



Procedural Model Example : Solids

“Physics” bank for Little Big Planet on PSP:

• 85 waveforms

• 60 relatively “complex” Scream scripts 

• Extra layer of control with more patches

(using with SCEA’s Xfade tool)

Impacts generated by procedural audio



Procedural Model Example : Creature

• Physical modelling of the 

vocal tract (Kelly-Lochbaum

model using waveguides)

• Glottal oscillator



Procedural Model Example : Creature

Eye Pet vocalizations:

• Over a thousand recordings of animals
• 634 waveforms used
• In 95 sound scripts

Eye Pet waveforms

Synthasaurus



Pros

• Offers a lot of advantages compared to static sounds
(non repetitive, dynamic, lots of control parameters)

• One model = many sounds !

• Some models can be implemented very easily
• Impacts / contacts
• Footsteps
• Air / Water

• Procedural audio is not necessarily more CPU expensive



Cons

• Not a solution for everything 

• It is still harder to implement and to debug

• Mostly due to lack of:

• trained sound designers / programmers / testers
• adapted tools / run-time
• ready-to-use models



Combining 
Procedural Audio & Audio Analysis



One of the main tasks of 
sound designers:

Transforming static sounds

into dynamic ones



Implementation with Scripting

Current scripting solutions:

• randomization of assets

• volume / pan / pitch variations

• streaming for big assets

Remaining issues:

• no timbral modifications 

• still uses a lot of resources (memory or disk)

• not really dynamic



A “simple” patch in Sony 
Scream Tool:

• 11 concurrent scripts

• each “grain” has its 
own set of 
parameters



Implementation with Patching

• Tools such as Pure Data / MAX MSP / Reaktor

• Better visualisation of flow and parallel processes and where 
the control parameters arrive in the model

• Sometimes hard to understand due to the granularity of 
operators

• Requires a PhD in mechanics, animal anatomy, physics etc..



A “simple” patch in Reaktor…



Another solution

Vendors of ready-to-use Procedural Audio models:

• easy to use but…
• limited to available models
• limited to what parameters they allow
• limited to the idea the vendor has of the sound

Examples: 
• Staccato Systems already in 2000…
• WWISE SoundSeed series
• SCEE’s Spark



Spark



Going further…

Need for higher-level tools that let the designer:

• create its own dynamic model of a sound

• specify its own control parameters

• without having an extensive knowledge of synthesis / sound 
production mechanisms

• without having to rely on third party models



Think asset models, not assets



Because we are using analysis…

• We can use our own sounds as basis for a model

• The modules can implement more complex 
behaviours

• We can have a smaller number of modules



Creature Vocalisations



Debris / impacts



Spark Tool = Spark + AFEX



Conclusions



How do we diffuse that bomb ?



Smarter Audio Pipelines & Engines !



Future Technologies for
Game Sound Design

• Data-driven as much as possible

• Better integration with other game sub-systems

• Knowing your data is the key to smarter tools and engines

(audio analysis)

• Generate audio at run-time when it makes sense

(procedural audio using models created with audio analysis)



Thank you!

Any questions?

Contact: nicolasfournel@yahoo.com
nicolas_fournel@scee.net


