
CEDEC 2008
Gems et al.

Nakamoto, Hiroshi
Borndigital. Inc

Computing World

Personal Programming World

Quod scripsi, scripsi.

近日発売！?

鋭意翻訳中！！

入稿

元原稿

校正

フォーマット変換

レウアウト

XHTML変換

索引

GDC

SIGGPRAH

EUROGRAPHICS

Python

SVN

InDesign

Google

取材
XHTML/MathML

wikipedia

C, C++, Objecttive-C,
Java, Algol-like, XML,

x86 Assembly, Yacc/Lex
Python, Lua, JavaScript,

Shader Assembly, Cg,, GLSL,
Core-Image,

Scheme, Prolog,
Erlang, Haskell

翻訳

デバッグ

<h1>Efficient Cache Replacement Using the Age and
Cost Metrics</h1>
<p class="author">Colt “MainRoach” McAnlis<br/
>Microsoft Ensemble Studios</p>
<p class="email">cmcanlis@ensemblestudios.com</p>
<p class="dc">In memory-constrained game
environments, custom media caches are used to amplify
the amount of data in a scene, while leaving a
smaller memory footprint than containing the entire
media in memory at once. The most difficult aspect of
using a cache system is identifying the proper victim
page to vacate when the cache fills to its upper
bounds. As cache misses occur, the choice of page-
replacement algorithm is essential— this choice is
directly linked to the performance and efficiency of
hardware memory usage for your game. A bad algorithm
will often destroy the performance of your title,
whereas a well implemented algorithm will enhance the
quality of your game by a significant factor, without
affecting performance. Popular cache-replacement
algorithms, such as LRU, work well for their intended
environment, but often struggle in situations that
require more data to make accurate victim page
identifications. This gem presents the Age and Cost
metrics to be used as values in constructing the
cache-replacement algorithm that best fits your
game’s needs.</p>
<h2>Overview</h2>
<p class="ni">When data is requested from main
memory, operating systems will pull the data into a
temporary area of memory (called a cache</
em>), ...</p>

<h1>AgeとCost基準を使う効率的なキャッシュ置換</h1>

<p class="author">Colt “MainRoach” McAnlis<br/
>Microsoft Ensemble Studios</p>
<p class="email">cmcanlis@ensemblestudios.com</
p>
<p class="dc">メモリが制約されたゲーム環境では、カスタム

メディア キャッシュを使って、メディア全体を一度にメモリ中に
持つよりも小さなメモリ フットプリントを残しながら、シーン
中のデータの量を増幅する。キャッシュ システムの使用で最も
難しい側面が、キャッシュがその上限まで一杯になったときに明
け渡す、適切な犠牲ページの識別だ。キャッシュ ミスが発生す
るときには、ページ置換アルゴリズムの選択が非常に重要で、こ
の選択がゲームでのハードウェア メモリの使い方の性能と効率
に直接連関する。悪いアルゴリズムはタイトルの性能をしばしば
損なう一方、良い実装のアルゴリズムは性能に影響を与えること
なく、ゲームの品質を何倍も強化する。LRUなどのよく知られた
キャッシュ置換アルゴリズムは、その意図した環境では上手く動
作するが、正確な犠牲ページ識別を行うために必要なデータが多
い状況では、しばしば四苦八苦する。このGemでは、自分のゲー
ムのニーズに最適なキャッシュ置換アルゴリズムの構築で値とし
て使う、AgeとCost基準を紹介する。</p>

<h2>概要</h2>

<p class="ni">メイン メモリからデータが要求されると
き、OSはメイン メモリよりも高速にアクセスできるメモリの一
時領域キャッシュと呼ばれる）、...</p>

<UNICODE-WIN>
<Version:4.0><FeatureSet:InDesign-
Japanese><ParaStyle:h1>AgeとCost基準を使う効率的な
キャッシュ置換
<ParaStyle:p.author>Colt “MainRoach” McAnlis
Microsoft Ensemble Studios
<ParaStyle:p.email>cmcanlis@ensemblestudios.com
<ParaStyle:p.dc>メモリが制約されたゲーム環境では、カスタム

メディア キャッシュを使って、メディア全体を一度にメモリ中に持
つよりも小さなメモリ フットプリントを残しながら、シーン中の
データの量を増幅する。キャッシュ システムの使用で最も難しい側
面が、キャッシュがその上限まで一杯になったときに明け渡す、適
切な犠牲ページの識別だ。キャッシュ ミスが発生するときには、
ページ置換アルゴリズムの選択が非常に重要で、この選択がゲーム
でのハードウェア メモリの使い方の性能と効率に直接連関する。悪
いアルゴリズムはタイトルの性能をしばしば損なう一方、良い実装
のアルゴリズムは性能に影響を与えることなく、ゲームの品質を何
倍も強化する。LRUなどのよく知られたキャッシュ置換アルゴリズ
ムは、その意図した環境では上手く動作するが、正確な犠牲ページ
識別を行うために必要なデータが多い状況では、しばしば四苦八苦
する。このGemでは、自分のゲームのニーズに最適なキャッシュ置換
アルゴリズムの構築で値として使う、AgeとCost基準を紹介する。
<ParaStyle:h2>概要
<ParaStyle:p.ni>メイン メモリからデータが要求されると
き、OSはメイン メモリよりも高速にアクセスできるメモリの一時
領域（<CharStyle:em>キャッシュ<CharStyle:>と呼ばれる）...

A simple solution that solves all of these problems is to use an ellipse for the field
of view. As you see in the right side of Figure 3.2.3, an ellipse gracefully deals with the
degradation of visual acuity with distance without leaving holes in the vision. The
ellipse “starts” a few feet behind the agent to model the sixth sense humans have about
people right behind them and encompasses entities adjacent to the agent.

220 Section 3 AI

Figure 3.2.2 The left figure illustrates a vision model using two view angles
and a circle. Note the holes in the vision system. The right figure illustrates
an ellipse overlaying the old model. The ellipse gracefully encompasses the
various view angles to give a more accurate model of vision.

Figure 3.2.3 The left figure shows the important components of an ellipse. The
middle figure shows how an example point on the ellipse is calculated. The right
figure shows an example view from an agent where [!] is half the view angle and a is
half the maximum view distance.

05273_03_Section 3_p205-294.qxd 12/17/07 9:30 AM Page 220

COLOR PLATE 1
Screenshot of the “path” command from Gem 1.6, where the user’s sketch is highlighted
in green and the force vectors are illustrated on the battlefield.

COLOR PLATE 2
Screenshot of the “target” command from Gem 1.6, where the command glyph (spiral) is
highlighted in red and the force vectors are illustrated on the battlefield.

05273_10_Color Insert.qxd 12/17/07 10:45 AM Page 1

COLOR PLATE 7
Dunes created using advanced particle deposition as described in Gem 5.1.

COLOR PLATE 9
Image of a clipped mipmap stack from Gem 5.6.

COLOR PLATE 8
A dog impostor from Gem 5.5 mod-
eled as a quad-layer relief texture.
The depth values of the progressing
layers are stored in the R, G, B and A
channels, respectively (left). A view of
the rendered dog impostor is shown
on the right.

05273_10_Color Insert.qxd 12/17/07 10:45 AM Page 4

ジオメトリ
geometry

光と影
Lights & Shadows

レンダリング
Rendering

GPUコンピューティング
GPU Computing

物理シミュレーション
Physical Sumulation

画像効果
Image Effects

GPUによる複雑な手続き的地形の生成
アニメーション付き群衆のレンダリング
DirectX 10ブレンドシェイプ：限界を突き破る
次世代SpeedTreeのレンダリング
汎用適応型メッシュ精緻化
GPUで生成する手続き的な木の風アニメーション
GPU上でのメタボールの点ベースの可視化

面積和分散影マップ
大域照明によるインタラクティブ シネマチック リライティング
プログラム可能なGPU上の平行分割影マップ
階層隠蔽カリングとジオメトリ シェーダを使う効率的で頑丈な影ボ
リューム
高品質アンビエント隠蔽
後処理としてのボリューム光散乱

現実的でリアルタイムな肌のレンダリングのための高度なテクニック
プレイ可能ユニバーサル キャプチャ
Crysisの植生の手続き的アニメーションとシェーディング
堅牢な複数スペキュラ反射と屈折
レリーフ マッピング用の緩和コーン ステッピング
Tabula Rasaの遅延シェーディング
GPUベースの重要度サンプリング

真性インポスタ
GPU上での法線マップ焼き付け
高速なオフスクリーン パーティクル
線形であることの重要性
GPU上でのベクトル アートのレンダリング
色による物体検出：リアルタイム ビデオ画像処理にGPUを使う
後処理効果としてのモーション ブラー
実用的な後処理被写界深度

GPU上のリアルタイム剛体シミュレーション
3D流体のリアルタイム シミュレーションとレンダリング
CUDAによる高速なN体シミュレーション
CUDAによる広域衝突検出
CUDAによる衝突検出のためのLCPアルゴリズム
4面体の1パスGPUスキャン変換を使う符号付き距離場

GPU上の高速ウィルス シグネチャ照合
GPU上のAES暗号化と解読
CUDAによる効率的な乱数生成と応用
CUDAによる地球の地下の探査
CUDAによる並列プレフィックス和（スキャン）
ガウス関数の漸進的計算
ジオメトリ シェーダを使うコンパクトで可変長の
GPUフィードバック

一般プログラミング
数学と物理
人工知能
オーディオ
グラフィックス
ネットワークとマルチプレイヤー
スクリプトとデータ駆動型システム

Game Programming Gems 7

AgeとCost基準を使う効率的なキャッシュ置換
高性能ヒープ アロケータ
Webcamでプレイするビデオ ゲームのためのオプティカル フロー
マルチプラットフォーム スレッディング エンジンの設計と実装
蜂とゲーマーに： 六角形タイルの扱い方
セル オートマトンに基づくリアルタイム戦略ゲームへのスケッチ ベースのインターフェイス
一人称シューディング ゲーム用の足ナビゲーション テクニック
遅延関数呼び出し起動システム
マルチスレッド ジョブと依存性システム
高度なデバッグ テクニック

一般プログラミング

乱数の生成
ゲームのための高速な汎用レイ問合せ
最遠特徴マップによる高速な剛体衝突検出
投影空間による幾何学計算の精度の改善
XenoCollide：複雑な衝突を簡単に
変換セマンティックを使う効率的な衝突検出
三角スプライン
ガウス乱数を現実的に変化する投射物の経路に使う

数学と物理

ビヘイビア クローニングで面白いエージェントを作り出す
リアリスティックで統合されたエージェント感知モデルの設計
AIアルゴリズムの複雑さの管理：ジェネリック プログラミング アプローチ
態度のすべて：意見、評判、NPCの個性の基礎的要素
プレイヤー トレースとインタラクティブ プレイヤー グラフによるゲームにおける知性の理解
目標指向プラン融合
A*を超えて：IDA*とフリンジ探索

AI

プログラム可能グラフィックス ハードウェアによる音声信号処理
MultiStream―次世代オーディオ エンジンを書く技術
注意深く聞こう、おそらく二度とこれを聴くことはない
ゲームの音声環境から繰り返しを取り除き、サウンド デザインへの新しいアプローチを論じる
リアルタイム オーディオ エフェクトの適用
コンテキスト駆動型、階層化ミキシング

オーディオ

高度な粒子堆積
チープな話：動的リアルタイム リップシンク
骨格アニメーションの累積誤差を減らす
粗い材質の拡散光のシェーディングのための代替モデル
高性能再分割サーフェイス
放射基底関数テクスチャによるレリーフ インポスタのアニメーション
SM1.1以降のクリップマッピング
高度なデカール システム
屋外地形レンダリング用の大きなテクスチャのマッピング
グラフタル インポスタによるアート ベースのレンダリング

グラフィックス

ゲーム世界の同期の高レベル抽象化
オンライン ゲームでの認証
スマート パケット スニファによるゲーム ネットワークのデバッグ

ネットワークとマルチプレイヤー

スクリプトとデータ駆動型システム

自動Luaバインディング システム
内観を使うC++オブジェクトのデータベースへの直列化
データポート
アーティストをサポートしよう：シェーダをエンジンに加える
PythonのASTと踊る

Ipsa scientia potestas est.

Lua

Python

Circle of
Confusion

Optical
Flow

Augmented
Reality

Windows
Error

Reporting

Mersennne
Twister

Constructive
Solid

Geometry

Support
Mapping

Trigonometric
Spline

Generic
Programming

Attitude,
Valence,
Potency

Interactive
Player
Graph

Fringe
Search

Nyquist
Limitation

Wavelet
Spherical

Harmonics

Navier-Stokes
Equation

Smoothed
Particle

Hydrodynamics

AES

SQL

Quarternion

Polynomial
Texture Method

Catmull-
Clark

Subdivision

Relief
Mapping

Shader
Model

Texture
Atlas

Graftal

Viseme &
Phoneme

Challenge
Hash

Authentification

Packet
Sniffer Language

Binding

Abstract
Syntax Tree

Summed-
Area

Variance
Shadow Map

Design
Pattern

Distance
Field

Prefix
Sum

Asian
Option

Seismic
Processing

Hough
Transform

Monte-Carlo
Simulation

Marching
Cube

Lua

Python

錯乱円

オプティカル
フロー

強化現実

Windows
Error

Reporting

メルセンヌ
ツイスター

構成立体幾何

サポート
写像

三角スプライン

ジェネリック プ
ログラミング

態度, 価数,
効力

インタラク
ティブ

プレイヤー
グラフ

フリンジ
探索

ナイキスト
限界

ウェーブ
レット

球面調和

ナビエ-ストー
クス方程式

平滑化粒子
流体力学

AES

SQL

クォータニ
オン

多項式テクス
チャ法

Catmull-
Clark
再分割

レリーフ
マッピング

シェーダ
モデル

テクス
チャ

アトラス

グラフタ
ル

口形素 &
音素

チャレンジ
ハッシュ認証

パケット
スニファ 言語

バインディ
ング

抽象構文木

面積和分散影
マップ

デザイン
パターン

距離場

プレ
フィック
ス和

アジア オ
プション

地震探査

ハフ変換

モンテカルロ
シミュレー
ション

マーチング
キューブ

Massive
Data

Networking

HD Video

Procedural Generation

S t o r y
CAD

SCAN

Photo

Game

S t o r y

ToolBox

シミュレータ

RNG UI

プリプロセス

エンジン

"Share"
Gems
OSS

ProceduralParallel

Ray Casting (Tracing) vs. Rasterlization

Logarithmic vs. Linear

Data Parallel

Task Parallel

Larrabee
CUDA

Compute Shader
OpenCL

An Example-based Procedural System ! ! ! ! ! ! ! ! !

for Element Arrangement

Takashi Ijiri†, Radomír M!ch‡, Takeo Igarashi†*, and Gavin Miller‡

†The University of Tokyo, ‡Adobe Systems Incorporated, *PRESTO JST

Abstract

We present a method for synthesizing two dimensional (2D) element arrangements from an example. The main

idea is to combine texture synthesis techniques based-on a local neighborhood comparison and procedural

modeling systems based-on local growth. Given a user-specified reference pattern, our system analyzes neigh-

borhood information of each element by constructing connectivity. Our synthesis process starts with a single

seed and progressively places elements one by one by searching a reference element which has local features

that are the most similar to the target place of the synthesized pattern. To support creative design activities, we

introduce three types of interaction for controlling global features of the resulting pattern, namely a spray tool,

a flow field tool, and a boundary tool. We also introduce a global optimization process that helps to avoid local

error concentrations. We illustrate the feasibility of our method by creating several types of 2D patterns.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, sha-

dowing, and texture. I.3.4 [Computer Graphics]: Paint Systems.

1. Introduction

We can often observe 2D arrangements of elements in ei-

ther man-made or natural environments, such as tiles, wall-

paper, hatching strokes, decorative arts, fabrics, flowers,

honeycombs, animal fur, waves, and so on. The synthesis

of arrangement patterns is not only useful for texture gen-

eration and non-photorealistic rendering (NPR), but it also

poses an interesting challenge in computer graphics. These

arrangements have a large variation; some of them may

have regular or near-regular features throughout, others are

not locally regular but they distribute irregular features

uniformly (irregular uniform). To synthesize the arrange-

ment patterns, the system has to preserve local spatial rela-

tionships between elements in the global distribution.

Two different groups of methods exist for generating

general texture patterns; texture synthesis and procedural

modeling. Pixel based texture synthesis is not well suited to

the problem of element arrangement, because not each

pixel but each element is individually perceptible in the

element arrangements. The spatial relationships between

elements are more important than those between pixels. In

contrast, procedural modeling systems deal with an element

as a unit module. The system starts from an initial feature,

and progressively replaces and adds modules based on

local generation rules. However, procedural frameworks

(a) (f)(d)

(e)

(b)

(c)

Figure 1: Our system takes the reference arrangement input by the user and analyzes the local structure by constructing the

connectivity (a). We then synthesize a larger pattern which has a similar local relationship and topology (b). The user also

can specify a local growth area, an underlying flow field or a boundary (c-f). Red strokes in (d) indicate user-specified flow

field strokes and blue lines in (f) are user-specified boundary lines.

EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno

(Guest Editors)

Volume 27 (2008),Number 2

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.

An Example-based Procedural System
for Element Arrangement

(Eurograph 2008)

GPU Gems 3

GPU Gems 3:

GPU Gems 3: CUDA

GPU Gems 3：3、6、16章

HLSL / GLSL / Cg
CUDA
Brook+
OpenCL

C / C++ ?

COLOR PLATE 1
Screenshot of the “path” command from Gem 1.6, where the user’s sketch is highlighted
in green and the force vectors are illustrated on the battlefield.

COLOR PLATE 2
Screenshot of the “target” command from Gem 1.6, where the command glyph (spiral) is
highlighted in red and the force vectors are illustrated on the battlefield.

05273_10_Color Insert.qxd 12/17/07 10:45 AM Page 1

COLOR PLATE 1
Screenshot of the “path” command from Gem 1.6, where the user’s sketch is highlighted
in green and the force vectors are illustrated on the battlefield.

COLOR PLATE 2
Screenshot of the “target” command from Gem 1.6, where the command glyph (spiral) is
highlighted in red and the force vectors are illustrated on the battlefield.

05273_10_Color Insert.qxd 12/17/07 10:45 AM Page 1

The proposed representation and sketch update can be efficiently done with a cel-
lular automaton, which is simply a grid of cells encoding information that evolves
through time according to a set of rules [Weisstein07]. Each rule is locally evaluated
for each cell based on information stored in neighboring cells.

Figure 1.6.5 shows a rectangular grid of square cells, which is the configuration of
the cellular automaton. The update of the grid information is made by a very simple
totalistic rule. As previously stated, each cell stores a force (a vector quantity), which
is given by the sketch position and direction on the grid (see Figure 1.6.6). Forces are
spread out on the battlefield, attenuated by the distance to the sketch. We implement
this with a rule that propagates the state of each cell to its neighbors iteratively until
the system reaches the equilibrium. The update of each cell corresponds to averaging
the quantities of the neighboring cells through time.

64 Section 1 General Programming

FIGURE 1.6.6 The 3D coordinates of the sketch (see Figure 1.6.4) are converted to 2D
coordinates in the cellular automaton grid. Each point on the grid corresponding to a sketch
point is marked with a force vector, which is iteratively smoothed through time.

As previously mentioned, such an automaton is formally called a totalistic cellular
automaton. You have a continuous range of states (because forces can be given in any
magnitude at each cell), a simple neighborhood (you are only looking to adjacent cells’
states to update each cell), and the rule depends only on the average of the values of the
neighboring cells. This last defines a totalistic cellular automaton [Weisstein07b], a
complex name for a simple technique.

Putting It All Together

In order to use the proposed approach in real RTS environments, you need a way to
define commands by sketches and to integrate the sketch-based interface with the cur-
rent unit-based interfaces. We propose some useful commands that can be translated to
the force grid approach, and also suggest a simple way to integrate sketch-based unit
management in an existing implementation.

05273_01_Section 1_p001-106.qxd 12/17/07 8:45 AM Page 64

In RTS gameplay, you frequently need to move troops through the battlefield,
guiding them around and in between natural obstacles, until you find some interest-
ing target. These two commands (guide and point targets) have a natural translation
with this approach. Guiding units can be made by line sketches, which are directly
converted to force vectors on the grid (see Figure 1.6.7). It can be necessary, however,
to ensure that the sketch is represented by a sufficient number of points on the grid.
This can be accomplished by rasterizing the lines defined between the sketch points
directly over the automaton grid.

Pointing out a target on the battlefield can be made by means of a small circular
sketch (or even a point), which is then converted to a set of vectors around the sketch,
pointing to the sketch center, as shown in Figure 1.6.7. The update of vectors around
the sketch creates a vector field pointing to the sketch center, which pushes units
closer to the desired target.

1.6 A Sketch-Based Interface to Real-Time Strategy Games 65

0 0 0

0 0 0

0 0 0 0

FIGURE 1.6.7 Different types of sketches (first row), their representation in the automaton
grid (middle row), and the resulting vector field (last row). The sketch footprint is stored in
the grid, which automatically updates the vector field through time. The “erase” command
(illustrated in the third column) is a special case, where the sketch cancels the forces of the grid.

It is easy to see, however, that the insertion of some vectors in the automaton grid
is not enough to create a stable vector field. The update mechanism smooths the cell
contents every timestep, and this information quickly fades away. In order to prevent
this from happening, we suggest the use of a command lifetime. The command life-
time is the number of iterations in which cells containing vectors originated by the

05273_01_Section 1_p001-106.qxd 12/17/07 8:45 AM Page 65

Here are a few more examples that hopefully will prevent people from using
homemade RNGs in critical applications.

RANDU

RANDU is an infamous LCG used since the 1960s; it is LGC(231,65539,0), and requires
an odd initial seed. The constants were chosen for easy and fast implementation. As all
LCGs, it suffers from linear relations between successive numbers. Figure 2.1.2 shows
the output of 10,000 triplets (x,y,z) plotted in 3D, which happen to fall into planes.

2.1 Random Number Generation 123

FIGURE 2.1.2 LCG bias.

Netscape

An early version of Netscape needed a CSPRNG, but seeded it with three values that
weren’t very well spread out (time of day, process ID, and parent process ID) and used
the result for cryptography. [Goldberg96] published a successful attack on Netscape’s
SSL protocol, with the exploitable flaw being a poor choice of seed.

Folklore Algorithms

The author encountered a folklore algorithm from a game programmer around 1992,
who explained that he had a fast and simple PRNG for his NES code. The basic idea
was to shift bits out of a seed, and whenever the seed had 1 bit about to shift off,

05273_02_Section 2_p107-204.qxd 12/17/07 10:13 AM Page 123

Generating Gaussian Randomness

Gaussian random number generators (GRNGs) are useful for statistical analysis and
have been studied in-depth for both speed and quality [Thomas07]. Speed is a concern
because large simulations require billions of normally distributed random numbers.
These simulations, which might perform communications or financial modeling, are
concerned with the quality and accuracy of the distribution in the far tails (beyond six
standard deviations). The reason is that extremely rare events can affect the outcome of
important features that these simulations wish to explore.

Fortunately, video games don’t require this level of rigor. In fact, games have the
opposite problem in that a GRNG shouldn’t generate extreme, but rare, numbers
because they would appear as an error to the player. For example, if tree heights were
determined with a GRNG, it would be odd to see most trees between 10 and 15 meters
with just one really tall 30 meter tree. Consequently, for most purposes, any GRNG you
use should reject (but not clamp) values beyond three standard deviations.

Gaussian Random Number Generators

One popular high-quality GRNG is polar-rejection [Knop69] (also known as the polar
form of the Box-Mueller transform). This algorithm was made popular by its inclusion
in the book Numerical Recipes in C [Press97] and is notable because its most expensive
operations consist of only one logarithm and one square root (avoiding sine and
cosine, which are required in the original Box-Mueller transform [Box58]). Although
this is a reasonable GRNG, there are faster algorithms.

200 Section 2 Math and Physics

FIGURE 2.8.1 Gaussian distribution (normal distribution) with a mean of zero and a
standard deviation of 1.0. The horizontal axis represents the value of the random numbers
generated and the vertical axis is the likelihood of seeing any particular value. The tails of
this distribution are the seldom-seen values beyond three standard deviations (less than –3.0
and more than 3.0).

05273_02_Section 2_p107-204.qxd 12/17/07 10:13 AM Page 200

The central limit theorem method can be made more accurate, especially in the
tails beyond three standard deviations, by summing more numbers (increased K).
However, this makes the algorithm slower for not much benefit, because you gener-
ally don’t care about the tails.

Varying Projectile Paths

An ideal application for a GRNG in games is adding random variation to projectile
paths. As discussed earlier, projectiles, like bullets and arrows, are expected to have
some variation that follows a Gaussian distribution (probably due to many random
variables like wind, hand shakiness, and projectile irregularities that additively con-
tribute to the final path). However, this Gaussian distribution needs to be expanded
into 2D, as shown in Figure 2.8.2.

202 Section 2 Math and Physics

FIGURE 2.8.2 The left target shows a Gaussian probability distribution in 2D. This can best
be visualized as the middle figure, which is a Gaussian distribution revolved around the center.
The right target is an example of 30 bullets perturbed by the revolved Gaussian distribution.
Because the rings are placed at one and two standard deviations, roughly 68 % of the bullets
strike within the smallest ring and 95% of the bullets strike within the two smallest rings.

The distribution in Figure 2.8.2 was created with the help of polar coordinates.
This requires two random numbers for each 2D point: an angle and a distance. The
bullets in Figure 2.8.2 were computed by generating a uniform random angle in the
range [0, 2!], along with the absolute value of a Gaussian random distance in the range
[–1, 1]. By using a uniform random number for the angle, you guarantee that the bul-
lets are evenly distributed at all angles around the center. By using a Gaussian random
number for the distance, you guarantee that the bullets are concentrated near the center,
following a normal distribution and the 68–95–99.7 rule.

The 2D distribution in Figure 2.8.2 is not technically a 2D Gaussian distribution
(also known as a multivariate normal distribution). A true 2D Gaussian distribution
is constructed with two Gaussian random numbers plotted against each other in
Cartesian coordinates (not polar coordinates). This distribution is useful in statistics,
but is not desirable for what you’re trying to model.

05273_02_Section 2_p107-204.qxd 12/17/07 10:13 AM Page 202

The computation for the view distance check is a simple distance test. However,
it is more efficient to test against the distance squared instead of the actual distance,
because it avoids taking a square root. For example, if the agent can see up to 10
meters away, is at coordinate (0,0,0), and the player is at coordinate (5,8,0), you can
compare the dot product of the vector between the two entities against the square of
the view distance. The dot product of the vector between them is 52 + 82 + 02 = 89.
Compare this against the view distance squared (102 = 100) and you find that the
agent can see the player, because 89 is less than 100. The distance squared optimiza-
tion can be used because you’re only interested in the relative distance, not the actual
distance.

The second common step is to do a view cone check. This is done by taking the
dot product of the agent’s normalized forward vector with the normalized vector that
points from the agent to the player (refer to the two vectors in Figure 3.2.1). If the
result is greater than zero, the player is within the agent’s 180° view cone. If the result
is greater than 0.5, the player is within the agent’s 120° view cone (cos 60° = 0.5). As
an optimization, if only the 180° view cone test is required, there is no need to nor-
malize the vectors (which potentially eliminates two square root calculations).

The final check, the line-of-sight test, is the most costly to perform. This test
shoots a ray from the agent’s eye level to the location of the player. If it intersects any
geometry before it hits the player, the agent can’t see the player. This test can be opti-

218 Section 3 AI

Figure 3.2.1 Example of view distance check, view cone check, and line-of-sight
check. In this case, the enemy sees the player because the player passes all three tests.

05273_03_Section 3_p205-294.qxd 12/17/07 9:30 AM Page 218

A simple solution that solves all of these problems is to use an ellipse for the field
of view. As you see in the right side of Figure 3.2.3, an ellipse gracefully deals with the
degradation of visual acuity with distance without leaving holes in the vision. The
ellipse “starts” a few feet behind the agent to model the sixth sense humans have about
people right behind them and encompasses entities adjacent to the agent.

220 Section 3 AI

Figure 3.2.2 The left figure illustrates a vision model using two view angles
and a circle. Note the holes in the vision system. The right figure illustrates
an ellipse overlaying the old model. The ellipse gracefully encompasses the
various view angles to give a more accurate model of vision.

Figure 3.2.3 The left figure shows the important components of an ellipse. The
middle figure shows how an example point on the ellipse is calculated. The right
figure shows an example view from an agent where [!] is half the view angle and a is
half the maximum view distance.

05273_03_Section 3_p205-294.qxd 12/17/07 9:30 AM Page 220

The arbitrary models depicted in Figures 3.2.4 and 3.2.5 are only examples and
should be modified as needed for the game design. They are very coarse approximations
of real human vision based on the particular features identified here. Clearly, these mod-
els take great liberties and approximate the science. For example, these models favor
180° vision over 200° for simplicity reasons. However, these models are a big improve-
ment in terms of subtlety and sensitivity compared with typical game vision models.

Another important feature of this vision model is to take into account the mental
alertness of the agent. When the agent is highly alert, the percentages should be
increased and the zones enlarged. If the agent is distracted or sleepy, the percentages
should be decreased and the zones reduced.

Modeling Human Hearing with Certainty

As demonstrated with the vision model, calculating sensory identification as a per-
centage can be an effective way to introduce subtlety into a sensing model. Similarly
it’s worth constructing a hearing model that produces percentages of certainty. How-
ever, before you dive in and create a hearing model, let’s look at some issues related to
sound and hearing.

The most important property of sound is that intensity falls off exponentially
with distance. Although sound propagates easily through air, only lower tones travel
well through walls. This makes conversations and many high pitched tones hard to
hear from adjacent rooms. Lastly, sound reflects off walls and reverberates within
rooms, making sounds capable of getting around most obstacles.

224 Section 3 AI

Figure 3.2.5 Vision model with gradient zones of certainty. The inner
circle falls off with angle, whereas the outer zone falls off with angle and
distance. The ellipse test remains discrete. Note that black equals 100%
certainty and white equals 0% certainty.

05273_03_Section 3_p205-294.qxd 12/17/07 9:30 AM Page 224

each method. This might result in the agents turning their heads in response. If the
object was running and fired a loud shot, it would be identified at 80%, 100%, and
90%, respectively, using each method. In this case, the agents might turn their heads
and bodies quickly and shoot once they are facing the player.

Adding Memory to the Unified Sensing Model

To achieve a greater degree of realism, agents must have short term memory to augment
their sensing model. This is necessary in order for agents to not forget about objects that
they have recently identified. For example, if the player moves quickly through the mid-
peripheral vision of the agent, the player will be identified at 100%. If the player out-
runs the agent, moving into the far-peripheral vision area and stops, the memory of the
player at 100% identification needs to be retained for some period of time (even though
the player should now technically be identified at only 30%). This makes sense, because
the agent identified the player and still has visual contact, making it reasonable to
assume that it is the same object that is still fully identified.

In order to implement this type of memory, each object that enters the sensing
model needs to be tracked. The object should have some unique identification num-
ber that can be associated with varying levels of identification. A timestamp and the
location of the object’s last known position should also be recorded. This information
will be stored in the agent. The general rule is to allow only the certainty level to
increase, as clues only add to the knowledge of the object. Once the object is not
sensed for several seconds, the structure can be purged from memory.

3.2 Designing a Realistic and Unified Agent-Sensing Model 227

Figure 3.2.7 Three examples of the unified sensing model combining vision with
hearing/smell. Hearing has a max certainty of 50% with no falloff shown. The left diagram
takes the max sense (vision, hearing) from each zone. The middle diagram adds vision with
hearing. The right diagram takes vision and adds half of the remaining overhead due to
hearing (to avoid certainties above 100%). In this example, the white circle is the player
making a loud sound, which results in 50%, 80%, and 75% certainty respectively in each

05273_03_Section 3_p205-294.qxd 12/17/07 9:30 AM Page 227

Without going into detail on the meaning of information theory, the purpose here
is to track how different the data is. The less information the better because it means
the labels are more uniform. In the example, there are three None, four Left, and
four Right labels, giving an information of Info([3,4,4]) = (–3 log2 3 – 4 log2 4 – 4 log2

4 + 11 log2 11)/11 = 1.5726.
If you look at only those labels where Distance is “1 to 2,” you have only two

instances and both are None, giving you Info([2]) = (–2 log2 2 + 2 log2 2)/2 = 0. In
other words, there is no information in that set because they are all the same.

The information in “0 to 1” is Info([1,2,2]) = 1.5219, and “2 to ∞” is Info([2,2]) =
1. Notice these are both close to the original information because the distributions of val-
ues are very similar.

Now you find the gain as 1.5726 – 3/11 * 0 – 4/11 * 1.5219 – 4/11 * 1 = 0.6555.
It is very easy to see that the gain on the hitpoints would be 0, as there is no change.
The gain using direction is 0.4816. Getting a uniform set in one of those examples
really helps the gain when you use distance.

(3.1.2)

In each of the three new nodes, you pass the subset of data that corresponds with
that value of distance and recurse using only that. There is no reason to use distance
again in the second pass (it would no longer improve the information), so direction
becomes an obvious choice as hitpoints still provides no information about the labels.
The tree is shown in Figure 3.1.2. Notice again for distance “1 to 2” that since the set
is already pure you just return that label; there is no reason to continue the recursion.

Gain O F Info O Info O F(;) () (|)= −

214 Section 3 AI

Figure 3.1.2 Example decision tree.

You pick the label, or control, by finding the majority value of that set. It is impor-
tant to note that for a majority to make sense in statistics, you want to make sure there
are enough samples to make the data meaningful. In Listing 3.1.1 for learnNode, you’ll

05273_03_Section 3_p205-294.qxd 12/17/07 9:30 AM Page 214

function turn
 if GameState.Distance == "0 to 1" then --Left branch
 if GameState.DirectionFrom == 1 then

 Ship.turn ("LEFT")
 elseif GameState.DirectionFrom == 2 then
 Ship.turn ("NONE")
 elseif GameState.DirectionFrom == 3 then
 Ship.turn ("RIGHT")
 else
 Ship.turn ("NONE")
 end
 elseif GameState.Distance == "1 to 2" then --Center branch
 Ship.turn ("NONE")
 elseif GameState.Distance == "2 to inf" then --Right branch
 if GameState.DirectionFrom == 1 then
 Ship.turn ("RIGHT")
 elseif GameState.DirectionFrom == 2 then
 Ship.turn ("LEFT")
 elseif GameState.DirectionFrom == 3 then
 Ship.turn ("RIGHT")
 else
 ...

http://playground.uncc.edu/
GameIntelligenceGroup/Projects/CGUL/

MultiStream
The Art of Writing a Next-Gen

Audio Enginesound processing of their audio is required and just playing their audio as stereo will be
fine. Not only does this allow for higher quality samples, but it also reduces processing
overheads because there are fewer surround sound objects in the game world.

Syncing Channels

One problem that often occurs in audio programming is being able to sync multiple
channels. This allows the starting, stopping, and pitch changing of multiple channels to
happen at the same time. You might hear phasing or chorus effects if this is not taken
into consideration.

The reason for this can be seen in Figure 4.2.6.

316 Section 4 Audio

FIGURE 4.2.5 Channel location relative to the player.

FIGURE 4.2.6 Channels can become out of sync if the audio engine updates between play
audio commands.

In Figure 4.2.6, you can see that two audio channels have been requested to play,
but due to the audio engine’s update routine firing in between the initialization of
these two audio channels, the output of “Audio 1” is now one data packet ahead of
“Audio 2.” In real life MultiStream terms, this means that “Audio 1” is 512 samples
ahead of “Audio 2.” This can also occur if you pause and resume channels, or set the
pitch of multiple channels, except that in both of these cases it is possible for the audio
to drift farther and farther out of sync!

05273_04_Section 4_p295-348.qxd 12/17/07 10:10 AM Page 316

developer to tweak and change parameters at will, rather than needing to go back to
the audio engineer and ask for changes or just put up with an effect that’s close
enough to what you want. Imagine a sample of a human voice that you decide would
sound better if it were talking through a radio headset. Having the ability to test these
effects without the need to waste time pre-processing data not only speeds up devel-
opment, but also allows for far more creativity when creating your audio.

Routing

The number of busses an audio channel can be mixed to cannot be underestimated.
For MultiStream, we currently have 31 sub-busses and one master buss. It is already
becoming apparent that these values should be increased in the future. The grouping
of sound sources has previously been used for volume scaling. For example, all SFX
would route to one bus, all music to another, and all commentary to another. The vol-
ume parameters can then be modified in, say, game “option” menus and will then just
set the volumes for these busses, scaling all audio playing through them.

Today, with the number of audio channels required for creating things like car
engines, busses can be used for far more than just volume scaling. By adding DSP
effects to busses, it is easier and less CPU intensive to set such effects for all of these
components in one go (see Figure 4.2.8). Imagine a car game where you see a car go
behind an object. Instead of processing low-pass filters for 30 or more audio channels,
you could just do it once.

318 Section 4 Audio

FIGURE 4.2.8 Putting DSP effects into the buss can reduce the amount of processing
done per channel.

05273_04_Section 4_p295-348.qxd 12/17/07 10:10 AM Page 318

354 Section 5 Graphics

it lands on the height field. If a lower adjacent position is found, the particle moves to
that position. The particle repeats this process until it can no longer move to an adjacent
position of lower elevation. Figure 5.1.1 demonstrates a single particle descending a
one-dimensional height field. The algorithm can be stopped when a predetermined
number of particles have been dropped or when the user is content with the results. Fig-
ure 5.1.2 shows an example of terrain created with particle deposition.

FIGURE 5.1.1 Depositing a single particle.

Improving Particle Deposition

Although particle deposition does create interesting topography for volcanic moun-
tain ranges, it is easy to see it has some limitations. Notice that the slope of the terrain

FIGURE 5.1.2 A screenshot of terrain generated with the original particle deposition algorithm.

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 354

formed by the particles is almost always 45°, which is a consequence of the heuristic
used to settle the particles on the terrain. Particles are not allowed to stack if there is a
lower adjacent position, so the slope will never be greater than 45°. Sometimes parti-
cles will briefly form slopes less than 45°. This usually occurs when particles are accu-
mulating in a valley or near an existing peak. Unfortunately, these gentler slopes will
never span more than a few positions. Developers would like to be able to create more
interesting terrain slopes composed of various angles that span small and large dis-
tances, as shown in Figure 5.1.3.

5.1 Advanced Particle Deposition 355

FIGURE 5.1.3 An example of ideal terrain composed of various angles.

Another limitation of particle deposition is there is no control over the placement of
major terrain features such as the volcano’s peak. It is also hard to control how many
peaks to create. The outcome of the terrain is almost entirely random. This is a big dis-
advantage if a level designer wants to create a certain number of volcanoes at specific
locations. It would be nice to give a level designer more control over the major terrain
features (for example, size, general shape, and placement). Perhaps the biggest limitation
to particle deposition is that it only creates topography that is suitable for a volcanic
mountain range. What if you want to create other types of terrain? Fortunately, all of
these limitations can be overcome with simple modifications to particle deposition.

Notice that particle deposition can be broken into two main steps. The first step
defines where to initially drop the particles. The second step defines where the parti-
cles settle after they have been dropped. Let’s refer to the first step as particle place-
ment, and the second step as particle dynamics. In order to overcome the limitations
of particle deposition, you need to improve both particle placement and particle
dynamics. Let’s start by examining particle dynamics.

Improving Particle Dynamics

Particle dynamics are required to simulate the effects of erosion. After a particle is
dropped on the height field, it begins randomly searching the adjacent positions to
determine if the particle can move to a lower elevation. The slope of the terrain is
implicitly defined by how far away the particle is allowed to search. The monotony of

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 355

traveling down the leeward slop. The following pseudocode implements a suitable
cost function, and Figure 5.1.11 demonstrates the results:

while stopping criteria has not been met:
choose a random position and remove a particle
displacement = small random number
while displacement >= 0:

move the particle one position in the direction of the wind
if the particle moves up

displacement -= 1
else

displacement -= 2
drop the particle and compute particle dynamics

362 Section 5 Graphics

FIGURE 5.1.10 Dunes are formed as particles are carried up the windward
slope and deposited on the leeward slope.

FIGURE 5.1.11 Dunes created using advanced particle deposition.

In this example the cost of traveling up the windward slope is only the horizontal
distance traveled (i.e. no vertical cost), and the cost of traveling down the leeward slope
is the horizontal and vertical distance traveled. This is a very simple, yet effective, cost
function. Different cost functions will yield different dune shapes and dynamics so
experimentation is encouraged.

Overhanging Terrain

As shown in Figure 5.1.12, overhanging terrain is terrain that protrudes over other
terrain. Particle deposition can create this type of terrain with some minor modifica-

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 362

The idea of this gem is to take reconstruction errors into account and use the recon-
struction algorithm to get the parent transform with error, and make the child trans-
forms parent-relative to that transform rather than the original.

This leads to the following procedure, which we call Algorithm 1:

1. Compress and format the root transform data.
2. Run the decompression algorithm on the result of Step 1 and replace the

original transform with the results.
3. For each child of the root, make its transform data relative to the decompressed

root transform data. Compress and format the parent-relative rotation data.
4. Run the decompression algorithm on each child from Step 3 to get its final

transform data and replace the original child data with the result.
5. Continue down the hierarchy until all bones have been processed.

This completely eliminates the accumulation of rotational error because for each
child transform, Step 3 subtracts the rotational error of the parent transform. However,
the parent’s rotation error does more than just rotate the child. It also translates the
child (unless the child’s origin is at the parent’s origin). That means that the parent-
relative transform resulting from Step 3 will generally have a translation that is differ-
ent from the constant one you store with the skeleton. This translation error can’t be
eliminated by any child rotation. Although you could correct it by adding a new trans-
lation, that would defeat the whole purpose of making the transforms parent relative,
which was to eliminate these translations in the first place! So translation error is still
accumulating, although total error is less than with the naive algorithm because the
rotation error is less.

Figure 5.2.2 shows the results of the naive algorithm and Algorithm 1. Note how
the child bones all have the same orientation as in the true pose (although still with
local error), and how they are offset by the translation error as a result of the rotational
error of the parent bone.

368 Section 5 Graphics

FIGURE 5.2.1 Cumulative error increases from parent to child.

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 368

It is possible to reduce this translation error, but to do this you have to rotate the
child bone away from its true orientation. To calculate this rotation, you first select a
fixed point on the bone where you would like to minimize the translation error. Let’s
call it a significant point. A significant point could be the origin of a child bone, or
some arbitrary point that identifies the “end” of the bone. You rotate the reconstructed
bone from Algorithm 1 so as to move the significant point closest to its true position.
Figure 5.2.3 shows the geometry.

5.2 Reducing Cumulative Errors in Skeletal Animations 369

FIGURE 5.2.2 Removing cumulative rotational error.

FIGURE 5.2.3 Reducing translation error at
the significant point.

The rotation is computed by the following equations:

(5.2.3)

(5.2.4)angle= ⋅()−cos 1 O'S' O'S

Axis O'S' O'S= ×

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 369

Modify Step 3 of Algorithm 1 to get Algorithm 2:

1. Compress and format the root transform data.
2. Run the decompression algorithm on the result of Step 1 and replace the

original transform with the results.
3. For each child of the root:

a. Make its transform data relative to the decompressed root transform data.
b. Concatenate this with the decompressed parent transform to get the

reconstructed transform, without error.
c. Compute the rotation that takes the significant point in this reconstructed

transform closest to its actual position, and add it to the transform.
d. Compress and format the parent-relative rotation data.

4. Run the decompression algorithm on each child from Step 3 to get its final
transform data and replace the original child data with the result.

5. Continue down the hierarchy until all bones have been processed.

Figure 5.2.4 shows the results of the naive algorithm and Algorithm 2. Note how
the child bones now have slight rotation errors (although they don’t accumulate, as
each step still corrects for the parent’s error) and how the translation error has been
reduced.

370 Section 5 Graphics

FIGURE 5.2.4 Reducing cumulative translational error.

Algorithm 2 does not completely eliminate translational error. One way to address
this is to add translation tracks at leaf bones to combat any objectionable artifacts.
Another way is to employ an inverse kinematics system to make sure that bones are
where they should be. Even if a game uses an IK system, these error reduction tech-
niques are useful because they improve the quality of the pose reconstruction so that it
is closer to the artist’s original version.

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 370

Relief impostors are obtained by mapping relief textures containing multiple layers of
depth, normals, and color data per texel onto quadrilaterals [Policarpo06].

Introduction

Textures in general can be used to represent both static and animated objects, and
texture-based animation traditionally uses techniques such as image warping or a set
of static textures cyclically mapped onto some polygons. Although conventional
image warping techniques are limited to some planar deformations, the second
approach requires as many textures as frames in the animation sequence, which, in
turn, tends to need a significant amount of artwork.

This gem describes a new technique for animating relief impostors based on a sin-
gle multilayer relief texture using radial basis functions (RBF). The technique preserves
the relief-impostor properties, allowing the viewer to observe changes in occlusion and
parallax during the animation. This is illustrated in Figure 5.5.1, which shows three
frames of a dog walking animation sequence created from a dog relief impostor. Note
the changes in the positions of the dog’s legs.

402 Section 5 Graphics

FIGURE 5.5.1 Three frames of a dog walking animation created by warping a relief impos-
tor. Note the changes in the positions of the legs.

In order to produce these animations, during a pre-processing step, the user spec-
ifies a set of control points over the texture of the relief impostor. Moving the control
points in 2D warps the texture, thus bringing the represented objects into new poses.
Such poses are the key poses to be interpolated during the animation. Note that these
poses are only implicitly represented by the control points and by a single texture.
This situation is illustrated in Figure 5.5.2.

As part of the pre-processing, the algorithm also interpolates the positions of
these control points for the desired number of frames in the animation and, for each
of them, solves a linear system to obtain a set of RBF coefficients. The control points
and their corresponding RBF coefficients define a series of warping functions that
produce the actual animation. For efficiency reasons, these control points and coeffi-
cients are stored in a texture (usually 16 ! 16 or 32 ! 32 texels). At runtime, this
data is used to recreate the animation on the GPU.

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 402

The proposed technique can be used to animate essentially any kind of texture-
based representations, such as relief textures [Oliveira00], billboards with normal
mapping, and displacement maps [Cook84]. Note that it is also possible to replace
the RBFs with any other method that describes the desired transformation and that
can be evaluated on a GPU. The proposed technique produces real-time realistic ani-
mations of live and moving objects undergoing repetitive motions.

5.5 Animating Relief Impostors Using Radial Basis Functions Textures 403

FIGURE 5.5.2 Control points (dark dots) placed over the texture of the relief impostor (top
row) warp the texture, changing the pose of the rendered dog (bottom row). All poses are
implicitly represented by a single texture and the sets of control points.

Image Warping

Warping-based texture animation evaluates a function over the source image in order
to compute each frame of the sequence. Given a source image, a warping function
produces an output image by computing new coordinates for each source pixel. Image
warping then comprises two steps:

• A mapping stage that associates source and target pixels’ coordinates.
• A re-sampling stage.

The mapping is usually computed using a global analytic function built from a
set of correspondences involving control points in the source and the target images.
Many techniques, such as triangulation based, inverse-distance weighted interpola-
tion, radial basis functions, and locally bounded radial basis functions, are available to
generate the mapping function from a set of corresponding points [Ruprecht95].

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 403

obtained by interpolating the coordinates of the corresponding pairs of control points
in St and St+k, and solving Equation 5.5.3 for the interpolated λs. To achieve some
smooth interpolation, we used a cubic Hermite spline, where the end points of the
tangents are given by the vector 0.5(St + St+k). This is illustrated in Figure 5.5.3.
When using normal maps, the same warping approach has to be applied to the nor-
mal map as well. Thus, both textures must be evaluated using the same RBF for each
frame.

5.5 Animating Relief Impostors Using Radial Basis Functions Textures 405

FIGURE 5.5.3 The light gray frames between time
0.0 and 0.5 used a cubic Hermite spline to interpolate
the control point.

Evaluating the Warping Function Using Shaders

Modern GPUs can execute programs called shaders. As the warping function needs to
be executed for each texel, it is clear that the RBF should be evaluated on a fragment
shader. But for this, it is necessary to invert the warping functions because, given a
fragment f, you must be able to obtain the texture coordinates that were mapped to f
under the warping transformation. Fortunately, inverting the warping function using
Equation 5.5.3 only requires two steps:

• Compute φij using the coordinates of the control points of the current (desired)
pose.

• Use the x and y coordinates of the unmodified (before moving) control points as
fkx and fky.

For the example shown in Figure 5.5.2, the RBF coefficients used for rendering
the image in the bottom center were computed as follows: φij are the distances
between the control points ci and cj shown in the top center, whereas fkx and fky are the
coordinates of the k-th control point shown in the top left. Note that the re-sampling
needed as the second step of an image warping operation is provided for free by the
texture filtering hardware.

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 405

Implementation of Clipmaps

Building on the concept of mipmapping, SGI developed clipmapping for the pur-
pose of virtualizing a single large texture [Tanner96].

414 Section 5 Graphics

FIGURE 5.6.1 Image of a clipped mipmap stack.

Recall that a mipmap is used to reduce aliasing and localize memory accesses.
Conceptually, when a given pixel of a triangle is rendered, the pixel’s bounds are pro-
jected into texture space, and based on its size, a mipmap is selected and from it a
point is sampled. The result of this is that as a triangle becomes more distant it selects
from less detailed mip levels and the memory accesses are less scattered than they
would otherwise be.

Clipmaps take the same basic idea, but the more detailed levels of the mip pyra-
mid are clipped to limit memory usage. This means that a 32KB px texture, which
would normally have 15 mip levels and consume half a gig of memory, if put into a
clipmap with a maximum level size of 512px, would only use six 512px textures’
worth of memory, plus a “cap” 512px texture with a full mip chain. The memory
footprint for this is only 7.3MB.

In SGI’s InfiniteReality2 hardware platform, the hardware, when accessing mip
levels, checked to see if the cached clipmap region in memory covered the area of the
mip level it wanted to read from. If so, it would sample as normal. If not, it would
bump up to the next less detailed mip level and try again, with the result that if
detailed data was not available for an area, less detailed data would be used instead.

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 414

Implementation of Clipmaps

Building on the concept of mipmapping, SGI developed clipmapping for the pur-
pose of virtualizing a single large texture [Tanner96].

414 Section 5 Graphics

FIGURE 5.6.1 Image of a clipped mipmap stack.

Recall that a mipmap is used to reduce aliasing and localize memory accesses.
Conceptually, when a given pixel of a triangle is rendered, the pixel’s bounds are pro-
jected into texture space, and based on its size, a mipmap is selected and from it a
point is sampled. The result of this is that as a triangle becomes more distant it selects
from less detailed mip levels and the memory accesses are less scattered than they
would otherwise be.

Clipmaps take the same basic idea, but the more detailed levels of the mip pyra-
mid are clipped to limit memory usage. This means that a 32KB px texture, which
would normally have 15 mip levels and consume half a gig of memory, if put into a
clipmap with a maximum level size of 512px, would only use six 512px textures’
worth of memory, plus a “cap” 512px texture with a full mip chain. The memory
footprint for this is only 7.3MB.

In SGI’s InfiniteReality2 hardware platform, the hardware, when accessing mip
levels, checked to see if the cached clipmap region in memory covered the area of the
mip level it wanted to read from. If so, it would sample as normal. If not, it would
bump up to the next less detailed mip level and try again, with the result that if
detailed data was not available for an area, less detailed data would be used instead.

05273_05_Section 5_p349-462.qxd 12/17/07 9:52 AM Page 414

• It allows the visualization of high-resolution textures with the possibility of
including higher-resolution regions.

• It allows the use of several independent large textures that can be combined to
show different information types simultaneously on the terrain.

Structure

The technique proposed manages a virtually unlimited texture that we call the virtual
texture. It is stored using a pyramidal mipmap scheme [Williams83]. The highest
detail level of this pyramid is formed by 2l–1 ! 2 l–1 texels at most (such as in case of a
square texture), with l being the number of levels in the pyramid. Levels are num-
bered from 0 to 2 i, the largest side size for level i, as illustrated in Figure 5.8.1.

5.8 Mapping Large Textures for Outdoor Terrain Rendering 437

FIGURE 5.8.1 Virtual texture.

The virtual texture is stored complete on persistent storage, either on a local disk
or remotely requested from a server. This virtual texture is structured in the persistent
storage level in square tiles with a side size in texels power of two. An exception to this
is those levels of the pyramid in which the texture size is smaller than the tile size.
Tiles are addressed with a vector (column, row, and level).

The pre-filtered mipmap levels of the virtual texture increase by a third the stor-
age space required, but this is needed to map the texture in an efficient way that
avoids aliasing artifacts.

Texture Cache

Following the clipmap concept, a subset of the full pyramid is cached in texture mem-
ory to apply the adequate detail level to the area being visualized. This virtual texture
is managed through a two-level cache system. The second-level cache is located in
main memory and uses a pool of buffers to store the least recently used tiles.

05273_05_Section 5_p349-462.qxd 12/17/07 9:53 AM Page 437

Tiles are asynchronously loaded on demand. Requests are prioritized by level with
coarser levels given higher priority. This way, larger areas are covered as quickly as pos-
sible and the detail around the center of interest is progressively refined as higher level
tiles become available. The tile size is a critical parameter, as it can impact the transfer
rate from persistent storage to main memory.

The first-level cache is a subset of the virtual texture levels that is resident in tex-
ture memory. The virtual pyramid is fully stored in texture memory from the apex to
the base level. This set of levels is called the pyramid and it will be managed as a reg-
ular mipmapped texture. The size of the base level is called the clipsize. The base level
(lb) is calculated from the clipsize (c) as lb=log2(c).

From the base level up, only a subregion of the whole level is stored. The set of
incomplete levels is called the stack. The levels of the stack are all the same size in tex-
els and, progressively from the coarser to the finer detail level, half the terrain region.
The levels that make up the stack are incomplete subsets (with size c ! c texels) of the
corresponding virtual texture levels. These levels are centered on a point of interest,
called the center of detail. These concepts are shown in Figure 5.8.1.

You’ll use l–lb+1 independent textures in texture memory, as shown in Figure
5.8.2. The first one (t0) corresponding to the pyramid’s finest level. Subsequent tex-
tures ti cache the virtual level lb+i.

438 Section 5 Graphics

FIGURE 5.8.2 Texture stack.

Trilinear Filtering

In order to allow the graphics system to perform a trilinear filtering to avoid aliasing,
mipmap levels for every texture are needed. Let tij be the mipmap level j of the texture
i; it caches level lb+i–j of the virtual texture.

As shown in Figure 5.8.3, it is not necessary to have all mipmap levels in the tex-
tures corresponding to the stack. This can save valuable bandwidth during cache updat-
ing. Our experience proves that about four or five mipmap levels in the textures of the
stack are enough to achieve good quality without noticeable artifacts with a clipsize of
1024 ! 1024 texels.

Figure 5.8.4 illustrates the terrain area covered by different levels of the stack.
There, you can see the application of those levels to a real terrain, represented by a
color-coded grid (see Color Plate 11 in the color insert of this book for the full-color
version of this image).

05273_05_Section 5_p349-462.qxd 12/17/07 9:53 AM Page 438

Texture Memory Usage

For an l level virtual texture with a clipsize c, m mipmap levels for the stack textures
and a texel depth of b bytes, the usage of texture memory for the cache can be com-
puted as follows:

(5.8.1)texture memory l l
c

b i
i

m

_ = − −() ⋅








 +

=

−

∑1
2

2
2

0

1
22

0

i

i

lb

b
=

∑













⋅

5.8 Mapping Large Textures for Outdoor Terrain Rendering 439

FIGURE 5.8.3 Texture stack with mipmap levels correspondence.

FIGURE 5.8.4 Rings of detail and an example of a virtual texture applied to the terrain,
showing levels of detail using color codes.

05273_05_Section 5_p349-462.qxd 12/17/07 9:53 AM Page 439

Phoneme Example Translation

OY Toy T OY

P Pee P IY

R Read R IY D

Phoneme Viseme

AA Big aah

CH Ch,J,sh

ER R

Carnegie Mellon Pronoucing Dictionary

procedural
PD
Lua

Lua
Python

SQL
Flash/ActionScript

JavaScript ?

Scripting Language

ゲーム デザイン、ターゲット ハードウェア、そして開発チーム自体
も次第に大きく複雑になっているので、業界はソフトウェア開発業界
の他の部分からの良いアイデアに、常に旺盛な食欲を持っていること
に気が付いている。開発チームにデータベース管理者はいるだろう
か？
......
開発チームは次第に正式なプロジェクト管理と、AgileやScrumのよ
うな製作方法論を採用するようになりつつあり、我々はそこでゲーム
開発外部の仲間の一般的な経験から利恩恵を得る。
......
マルチコア マシンへのシフトにより、PCだろうと今日のゲーム機だ
ろうと、開発者は伝統的なC/C++プログラミング言語を超えて並列
性と同期の問題の解決を調べるようになり、我々が利用可能なものを
知るために、HaskellやErlangのような言語を熟知した人の経験を積
極的に求めている。

Exemplis discimus.

